astromodels.functions.functions_1D.functions module
- class astromodels.functions.functions_1D.functions.DiracDelta(**kwargs)[source]
Bases:
Function1D
description :
return at zero_point
latex : $ value $
parameters :
value :
desc : Constant value initial value : 0
zero_point:
desc: value at which function is non-zero initial value : 0 fix : yes
- static info()
- class astromodels.functions.functions_1D.functions.Exponential_cutoff(**kwargs)[source]
Bases:
Function1D
description :
An exponential cutoff
latex : $ K exp{(-x/xc)} $
parameters :
K :
desc : Normalization initial value : 1.0 fix : no is_normalization : True
- xc :
desc : cutoff initial value : 100 min : 1
- static info()
- exception astromodels.functions.functions_1D.functions.GSLNotAvailable[source]
Bases:
ImportWarning
- class astromodels.functions.functions_1D.functions.GenericFunction(**kwargs)[source]
Bases:
Function1D
description :
Return k*f(x)
latex : $ k $
parameters :
k :
desc : Constant value initial value : 1
- property function
Get/set function
- static info()
- exception astromodels.functions.functions_1D.functions.InvalidUsageForFunction[source]
Bases:
Exception
- class astromodels.functions.functions_1D.functions.Log_parabola(**kwargs)[source]
Bases:
Function1D
description :
A log-parabolic function. NOTE that we use the high-energy convention of using the natural log in place of the base-10 logarithm. This means that beta is a factor 1 / log10(e) larger than what returned by those software using the other convention.
latex : $ K left( frac{x}{piv} right)^{alpha -beta log{left( frac{x}{piv} right)}} $
parameters :
- K :
desc : Normalization initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e5
- piv :
desc : Pivot (keep this fixed) initial value : 1 fix : yes
alpha :
desc : index initial value : -2.0
beta :
desc : curvature (positive is concave, negative is convex) initial value : 1.0
- static info()
- property peak_energy
Returns the peak energy in the nuFnu spectrum
- Returns:
peak energy in keV
- exception astromodels.functions.functions_1D.functions.NaimaNotAvailable[source]
Bases:
ImportWarning
- class astromodels.functions.functions_1D.functions.Sin(**kwargs)[source]
Bases:
Function1D
description :
A sinusodial function
latex : $ K~sin{(2pi f x + phi)} $
parameters :
K :
desc : Normalization initial value : 1 is_normalization : True
f :
desc : frequency initial value : 1.0 / (2 * np.pi) min : 0
phi :
desc : phase initial value : 0 min : -np.pi max : +np.pi unit: rad
- tests :
{ x : 0.0, function value: 0.0, tolerance: 1e-10}
{ x : 1.5707963267948966, function value: 1.0, tolerance: 1e-10}
- static info()
- class astromodels.functions.functions_1D.functions.StepFunction(**kwargs)[source]
Bases:
Function1D
description :
A function which is constant on the interval lower_bound - upper_bound and 0 outside the interval. The extremes of the interval are counted as part of the interval.
latex : $ f(x)=begin{cases}0 & x < text{lower_bound} \text{value} & text{lower_bound} le x le text{upper_bound} \ 0 & x > text{upper_bound} end{cases}$
parameters :
lower_bound :
desc : Lower bound for the interval initial value : 0
upper_bound :
desc : Upper bound for the interval initial value : 1
value :
desc : Value in the interval initial value : 1.0
- tests :
{ x : 0.5, function value: 1.0, tolerance: 1e-20}
{ x : -0.5, function value: 0, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.functions.StepFunctionUpper(**kwargs)[source]
Bases:
Function1D
description :
A function which is constant on the interval lower_bound - upper_bound and 0 outside the interval. The upper interval is open.
latex : $ f(x)=begin{cases}0 & x < text{lower_bound} \text{value} & text{lower_bound} le x le text{upper_bound} \ 0 & x > text{upper_bound} end{cases}$
parameters :
lower_bound :
desc : Lower bound for the interval initial value : 0 fix : yes
upper_bound :
desc : Upper bound for the interval initial value : 1 fix : yes
value :
desc : Value in the interval initial value : 1.0
- tests :
{ x : 0.5, function value: 1.0, tolerance: 1e-20}
{ x : -0.5, function value: 0, tolerance: 1e-20}
- static info()