astromodels.functions.functions_1D.powerlaws module
- class astromodels.functions.functions_1D.powerlaws.Band(**kwargs)[source]
Bases:
Function1D
description :
Band model from Band et al., 1993, parametrized with the peak energy
latex : $K begin{cases} left(frac{x}{piv}right)^{alpha} exp left(-frac{(2+alpha) x}{x_{p}}right) & x leq (alpha-beta) frac{x_{p}}{(alpha+2)} \ left(frac{x}{piv}right)^{beta} exp (beta-alpha)left[frac{(alpha-beta) x_{p}}{piv(2+alpha)}right]^{alpha-beta} &x>(alpha-beta) frac{x_{p}}{(alpha+2)} end{cases} $
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : low-energy photon index initial value : -1.0 min : -1.5 max : 3
xp :
desc : peak in the x * x * N (nuFnu if x is a energy) initial value : 500 min : 10 transformation : log10
beta :
desc : high-energy photon index initial value : -2.0 min : -5.0 max : -1.6
piv :
desc : pivot energy initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Band_Calderone(**kwargs)[source]
Bases:
Function1D
description :
The Band model from Band et al. 1993, implemented however in a way which reduces the covariances between the parameters (Calderone et al., MNRAS, 448, 403C, 2015)
latex : $ text{(Calderone et al., MNRAS, 448, 403C, 2015)} $
parameters :
- alpha :
desc : The index for x smaller than the x peak initial value : -1 min : -10 max : 10
beta :
- descindex for x greater than the x peak (only if opt=1, i.e., for the
Band model)
initial value : -2.2 min : -7 max : -1
xp :
desc : position of the peak in the x*x*f(x) space (if x is energy, this is the nuFnu or SED space) initial value : 200.0 min : 1e-10 transformation : log10
F :
desc : integral in the band defined by a and b initial value : 1e-6 min: 1e-50 is_normalization : True transformation : log10
a:
desc : lower limit of the band in which the integral will be computed initial value : 1.0 min : 0 fix : yes
b:
desc : upper limit of the band in which the integral will be computed initial value : 10000.0 min : 0 fix : yes
opt :
desc : option to select the spectral model (0 corresponds to a cutoff power law, 1 to the Band model) initial value : 1 min : 0 max : 1 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Band_grbm(**kwargs)[source]
Bases:
Function1D
description :
Band model from Band et al., 1993, parametrized with the cutoff energy
latex : $ $
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : low-energy photon index initial value : -1.0 min : -1.5 max : 3
xc :
desc : cutoff of exp initial value : 500 min : 10 transformation : log10
beta :
desc : high-energy photon index initial value : -2.0 min : -5.0 max : -1.6
piv :
desc : pivot energy initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Broken_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A broken power law function
latex : $ f(x)= K~begin{cases}left( frac{x}{x_{b}} right)^{alpha} & x < x_{b} \ left( frac{x}{x_{b}} right)^{beta} & x ge x_{b} end{cases} $
parameters :
K :
desc : Normalization (differential flux at x_b) initial value : 1.0 min : 1e-50 is_normalization : True transformation : log10
xb :
desc : Break point initial value : 10 min : 1.0 transformation : log10
alpha :
desc : Index before the break xb initial value : -1.5 min : -10 max : 10
beta :
desc : Index after the break xb initial value : -2.5 min : -10 max : 10
piv :
desc : Pivot energy initial value : 1.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A power law multiplied by an exponential cutoff
latex : $ K~frac{x}{piv}^{index}~exp{-x/xc} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xc :
desc : Cutoff energy initial value : 10.0 transformation : log10 min: 1.0
- static info()
- class astromodels.functions.functions_1D.powerlaws.Cutoff_powerlaw_Ep(**kwargs)[source]
Bases:
Function1D
description :
A power law multiplied by an exponential cutoff parametrized with Ep
latex : $ K~frac{x}{piv}^{index}~exp{-x(2+index)/xp} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xp :
desc : peak in the x * x * N (nuFnu if x is a energy) initial value : 500 min : 10 max : 1e4 transformation : log10
- static info()
- class astromodels.functions.functions_1D.powerlaws.DoubleSmoothlyBrokenPowerlaw(**kwargs)[source]
Bases:
Function1D
description : A smoothly broken power law with two breaks as parameterized in Ravasio, M. E. et al. Astron Astrophys 613, A16 (2018).
latex : $begin{array}{l}begin{aligned}f(x)=& A x_{mathrm{b}}^{alpha_{1}}left[left[left(frac{x}{x_{mathrm{b}}}right)^{-alpha_{1} n_{1}}+left(frac{x}{x_{mathrm{b}}}right)^{-alpha_{2} n_{1}}right]^{frac{n_{2}}{n_{1}}}right.\&left.+left(frac{x}{x_{mathrm{j}}}right)^{-beta n_{2}} cdotleft[left(frac{x_{mathrm{j}}}{x_{mathrm{b}}}right)^{-alpha_{1} n_{1}}+left(frac{x_{mathrm{j}}}{x_{mathrm{b}}}right)^{-alpha_{2} n_{1}}right]^{frac{n_{2}}{n_{1}}}right]^{-frac{1}{n_{2}}}end{aligned}\text { where }\x_{mathrm{j}}=x_{mathrm{p}} cdotleft(-frac{alpha_{2}+2}{beta+2}right)^{frac{1}{left.beta-alpha_{2}right) n_{2}}}end{array}$
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha1 :
desc : photon index below xb initial value : -0.66
xb :
desc : break energy below xp initial value : 100 min : 1e-10 transformation : log10
n1 :
desc : curvature of the first break initial value : 2.0 min : 0 fix: True
alpha2 :
desc : photon index between xb and xp initial value : -1.5
xp :
desc : nuFnu peak initial value : 300 min : 1e-10 transformation : log10
n2 :
desc : curvature of the break at xp initial value : 2.0 min : 0 fix: True
beta :
desc : photon index above xp initial value : -2.5 max : 2
piv :
desc : pivot energy initial value : 1. fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Inverse_cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
- description :
A power law multiplied by an exponential cutoff [Note: instead of cutoff energy energy parameter xc, b = 1/xc is used]
latex : $K frac{x}{piv}^{index}exp{(-x~b)} $ parameters :
- K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
- piv :
desc : Pivot value initial value : 1 fix : yes
- index :
desc : Photon index initial value : -2 min : -10 max : 10
- b :
desc : inverse cutoff energy i.e 1/xc initial value : 1
- static info()
- class astromodels.functions.functions_1D.powerlaws.Powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A simple power-law
latex : $ K~frac{x}{piv}^{index} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2.01 min : -10 max : 10
- tests :
{ x : 10, function value: 0.01, tolerance: 1e-20}
{ x : 100, function value: 0.0001, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.powerlaws.Powerlaw_Eflux(**kwargs)[source]
Bases:
Function1D
- description :
A power-law where the normalization is the energy flux defined between a and b
latex : $F~frac{x}{piv}^{index} $ parameters :
- F :
desc : Normalization (energy flux at the between a and b) erg /cm2 s initial value : 1.e-5 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
- piv :
desc : Pivot value initial value : 1 fix : yes
- index :
desc : Photon index initial value : -2 min : -10 max : 10
- a :
desc : lower energy integral bound (keV) initial value : 1 min : 0 fix: yes
- b :
desc : upper energy integral bound (keV) initial value : 100 min : 0 fix: yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Powerlaw_flux(**kwargs)[source]
Bases:
Function1D
description :
A simple power-law with the photon flux in a band used as normalization. This will reduce the correlation between the index and the normalization.
latex : $ frac{F(gamma+1)} {b^{gamma+1} - a^{gamma+1}} (x)^{gamma}$
parameters :
F :
desc : Integral between a and b initial value : 1 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
index :
desc : Photon index initial value : -2 min : -10 max : 10
a :
desc : lower bound for the band in which computing the integral F initial value : 1.0 fix : yes
b :
desc : upper bound for the band in which computing the integral F initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.SmoothlyBrokenPowerLaw(**kwargs)[source]
Bases:
Function1D
description :
A Smoothly Broken Power Law
Latex : $ $
parameters :
K :
desc : normalization initial value : 1 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : power law index below the break initial value : -1 min : -1.5 max : 2
break_energy:
desc: location of the peak initial value : 300 fix : no min : 10 transformation : log10
break_scale :
desc: smoothness of the break initial value : 0.5 min : 0. max : 10. fix : yes
beta:
desc : power law index above the break initial value : -2. min : -5.0 max : -1.6
pivot:
desc: where the spectrum is normalized initial value : 100. fix: yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Super_cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A power law with a super-exponential cutoff
latex : $ K~frac{x}{piv}^{index}~exp{(-x/xc)^{gamma}} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 min : 1e-50 is_normalization : True transformation : log10
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xc :
desc : Cutoff energy initial value : 10.0 min : 1.0 transformation : log10
gamma :
desc : Index of the super-exponential cutoff initial value : 1.0 min : 0.1 max : 10.0
- static info()