astromodels.functions.functions_3D module
- class astromodels.functions.functions_3D.Continuous_injection_diffusion(**kwargs)[source]
Bases:
Function3D
description :
Positron and electrons diffusing away from the accelerator
latex : $left(frac{180^circ}{pi}right)^2 frac{1.2154}{sqrt{pi^3} r_{rm diff} ({rm angsep} ({rm x, y, lon_0, lat_0})+0.06 r_{rm diff} )} , {rm exp}left(-frac{{rm angsep}^2 ({rm x, y, lon_0, lat_0})}{r_{rm diff} ^2} right)$
parameters :
lon0 :
desc : Longitude of the center of the source initial value : 0.0 min : 0.0 max : 360.0
lat0 :
desc : Latitude of the center of the source initial value : 0.0 min : -90.0 max : 90.0
rdiff0 :
desc : Projected diffusion radius limited by the cooling time. The maximum allowed value is used to define the truncation radius. initial value : 1.0 min : 0 max : 20
rinj :
desc : Ratio of diffusion radius limited by the injection time over rdiff0. The maximum allowed value is used to define the truncation radius. initial value : 100.0 min : 0 max : 200 fix : yes
delta :
desc : index for the diffusion coefficient initial value : 0.5 min : 0.3 max : 0.6 fix : yes
b :
desc : b field strength in uG initial value : 3 min : 1 max : 10. fix : yes
piv :
desc : Pivot for the diffusion radius initial value : 2e10 min : 0 fix : yes
- piv2 :
desc : Pivot for converting gamma energy to electron energy (always be 1 TeV) initial value : 1e9 min : 0 fix : yes
- get_boundaries()[source]
Returns the boundaries of this function. By default there is no boundary, but subclasses can override this.
- Returns:
a tuple of tuples containing the boundaries for each coordinate (ra_min, ra_max), (dec_min, dec_max)
- get_total_spatial_integral(z=None)[source]
Returns the total integral (for 2D functions) or the integral over the spatial components (for 3D functions). needs to be implemented in subclasses.
- Returns:
an array of values of the integral (same dimension as z).
- static info()
- class astromodels.functions.functions_3D.Continuous_injection_diffusion_ellipse(**kwargs)[source]
Bases:
Function3D
description :
Positron and electrons diffusing away from the accelerator
latex : $left(frac{180^circ}{pi}right)^2 frac{1.2154}{sqrt{pi^3} r_{rm diff} ({rm angsep} ({rm x, y, lon_0, lat_0})+0.06 r_{rm diff} )} , {rm exp}left(-frac{{rm angsep}^2 ({rm x, y, lon_0, lat_0})}{r_{rm diff} ^2} right)$
parameters :
lon0 :
desc : Longitude of the center of the source initial value : 0.0 min : 0.0 max : 360.0
lat0 :
desc : Latitude of the center of the source initial value : 0.0 min : -90.0 max : 90.0
rdiff0 :
desc : Projected diffusion radius. The maximum allowed value is used to define the truncation radius. initial value : 1.0 min : 0 max : 20
delta :
desc : index for the diffusion coefficient initial value : 0.5 min : 0.3 max : 0.6 fix : yes
b :
desc : b field strength in uG initial value : 3 min : 1 max : 10. fix : yes
piv :
desc : Pivot for the diffusion radius initial value : 2e10 min : 0 fix : yes
piv2 :
desc : Pivot for converting gamma energy to electron energy (always be 1 TeV) initial value : 1e9 min : 0 fix : yes
incl :
desc : inclination of semimajoraxis to a line of constant latitude initial value : 0.0 min : -90.0 max : 90.0 fix : yes
elongation :
desc : elongation of the ellipse (b/a) initial value : 1. min : 0.1 max : 10.
- get_boundaries()[source]
Returns the boundaries of this function. By default there is no boundary, but subclasses can override this.
- Returns:
a tuple of tuples containing the boundaries for each coordinate (ra_min, ra_max), (dec_min, dec_max)
- get_total_spatial_integral(z=None)[source]
Returns the total integral (for 2D functions) or the integral over the spatial components (for 3D functions). needs to be implemented in subclasses.
- Returns:
an array of values of the integral (same dimension as z).
- static info()
- class astromodels.functions.functions_3D.Continuous_injection_diffusion_legacy(**kwargs)[source]
Bases:
Function3D
description :
Positron and electrons diffusing away from the accelerator
latex : $left(frac{180^circ}{pi}right)^2 frac{1.2154}{sqrt{pi^3} r_{rm diff} ({rm angsep} ({rm x, y, lon_0, lat_0})+0.06 r_{rm diff} )} , {rm exp}left(-frac{{rm angsep}^2 ({rm x, y, lon_0, lat_0})}{r_{rm diff} ^2} right)$
parameters :
lon0 :
desc : Longitude of the center of the source initial value : 0.0 min : 0.0 max : 360.0
lat0 :
desc : Latitude of the center of the source initial value : 0.0 min : -90.0 max : 90.0
rdiff0 :
desc : Projected diffusion radius. The maximum allowed value is used to define the truncation radius. initial value : 1.0 min : 0 max : 20
delta :
desc : index for the diffusion coefficient initial value : 0.5 min : 0.3 max : 0.6 fix : yes
uratio :
desc : ratio between u_cmb and u_B initial value : 0.5 min : 0.01 max : 100. fix : yes
piv :
desc : Pivot for the diffusion radius initial value : 2e10 min : 0 fix : yes
- piv2 :
desc : Pivot for converting gamma energy to electron energy (always be 1 TeV) initial value : 1e9 min : 0 fix : yes
- get_boundaries()[source]
Returns the boundaries of this function. By default there is no boundary, but subclasses can override this.
- Returns:
a tuple of tuples containing the boundaries for each coordinate (ra_min, ra_max), (dec_min, dec_max)
- get_total_spatial_integral(z=None)[source]
Returns the total integral (for 2D functions) or the integral over the spatial components (for 3D functions). needs to be implemented in subclasses.
- Returns:
an array of values of the integral (same dimension as z).
- static info()
- class astromodels.functions.functions_3D.GalPropTemplate_3D(name: Optional[str] = None, function_definition: Optional[str] = None, parameters: Optional[Dict[str, Parameter]] = None, properties: Optional[Dict[str, FunctionProperty]] = None)[source]
Bases:
Function3D
description :
Use a 3D template that has morphology and flux information. GalProp, DRAGON or a similar model in fits format would work. Only parameter is a normalization factor.
latex : $ K $
parameters :
K :
desc : normalization initial value : 1 fix : yes
hash :
desc : hash of model map [needed for memoization] initial value : 1 fix : yes
- get_boundaries()[source]
Returns the boundaries of this function. By default there is no boundary, but subclasses can override this.
- Returns:
a tuple of tuples containing the boundaries for each coordinate (ra_min, ra_max), (dec_min, dec_max)