Cauchy

[3]:
# Parameters
func_name = "Cauchy"
positive_prior = False

Description

[5]:
func.display()
  • description: The Cauchy distribution
  • formula: $ K \frac{1}{ \gamma \pi} \left[ \frac{\gamma^2}{(x-x_0)^2 + \gamma^2} \right] $
  • parameters:
    • K:
      • value: 1.0
      • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Cauchy distribution
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True
    • x0:
      • value: 0.0
      • desc: Central value
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True
    • gamma:
      • value: 1.0
      • desc: standard deviation
      • min_value: 1e-12
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True

Shape

The shape of the function.

If this is not a photon model but a prior or linear function then ignore the units as these docs are auto-generated

[6]:
fig, ax = plt.subplots()


ax.plot(energy_grid, func(energy_grid), color=blue, lw=3)

ax.set_xlabel("x")
ax.set_ylabel("probability")

[6]:
Text(0, 0.5, 'probability')
../_images/notebooks_Cauchy_8_1.png

Random Number Generation

This is how we can generate random numbers from the prior.

[7]:


u = np.random.uniform(0,1, size=5000) draws = [func.from_unit_cube(x) for x in u] fig, ax = plt.subplots() ax.hist(draws, color=green, bins=50) ax.set_xlabel("value") ax.set_ylabel("N")

[7]:
Text(0, 0.5, 'N')
../_images/notebooks_Cauchy_10_1.png