astromodels.functions.functions_1D package
Submodules
astromodels.functions.functions_1D.absorption module
- class astromodels.functions.functions_1D.absorption.AbundanceTable(name: str, tables: List[str], _current_table: str)[source]
Bases:
object
- property current_table: str
- property info: str
- name: str
- set_table(table: str)[source]
set the current table from AG89, WILM or ASPL
- Parameters:
table (str) –
- Returns:
- tables: List[str]
- property xsect_table: ndarray
returns the XSECT table for the current model
- Returns:
- exception astromodels.functions.functions_1D.absorption.EBLTableNotAvailable[source]
Bases:
ImportWarning
- exception astromodels.functions.functions_1D.absorption.InvalidUsageForFunction[source]
Bases:
Exception
- class astromodels.functions.functions_1D.absorption.PhAbs(**kwargs)[source]
Bases:
Function1D
- description :
Photometric absorption (phabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- parameters :
- NH :
desc : absorbing column density in units of 1e22 particles per cm^2 initial value : 1.0 is_normalization : False transformation : log10 min : 1e-4 max : 1e4 delta : 0.1
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- properties:
- abundance_table:
desc: the abundance table for the model initial value: AG89 allowed values: - AG89 - ASPL function: _init_xsect
- property abundance_table_info
- static info()
- class astromodels.functions.functions_1D.absorption.TbAbs(**kwargs)[source]
Bases:
Function1D
- description :
Photometric absorption (Tbabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- parameters :
- NH :
desc : absorbing column density in units of 1e22 particles per cm^2 initial value : 1.0 is_normalization : True transformation : log10 min : 1e-4 max : 1e4 delta : 0.1
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- properties:
- abundance_table:
desc: the abundance table for the model initial value: WILM allowed values: - WILM - AG89 - ASPL function: _init_xsect
- property abundance_table_info
- static info()
- class astromodels.functions.functions_1D.absorption.WAbs(**kwargs)[source]
Bases:
Function1D
- description :
Photometric absorption (Wabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- parameters :
- NH :
desc : absorbing column density in units of 1e22 particles per cm^2 initial value : 1.0 is_normalization : True transformation : log10 min : 1e-4 max : 1e4 delta : 0.1
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- property abundance_table_info
- static info()
astromodels.functions.functions_1D.apec module
astromodels.functions.functions_1D.blackbody module
- class astromodels.functions.functions_1D.blackbody.Blackbody(**kwargs)[source]
Bases:
Function1D
- description :
A blackbody function
latex : $f(x) = K frac{x^2}{exp(frac{x}{kT}) -1} $
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- kT :
desc : temperature of the blackbody initial value : 30.0 min: 0.
- static info()
- class astromodels.functions.functions_1D.blackbody.ModifiedBlackbody(**kwargs)[source]
Bases:
Function1D
- description :
A blackbody function
latex : $f(x) = K frac{x^2}{exp(frac{x}{kT}) -1} $
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- kT :
desc : temperature of the blackbody initial value : 30.0 min: 0.
- static info()
- class astromodels.functions.functions_1D.blackbody.NonDissipativePhotosphere(**kwargs)[source]
Bases:
Function1D
- description :
Non-dissipative photosphere of a GRB occuring above the saturation radius Acuner, Z., Ryde, F. & Yu, H.-F. Mon Not R Astron Soc 487, 5508–5519 (2019).
latex : $N_{mathrm{E}}=Kleft(frac{E}{E_{mathrm{pivot}}}right)^{0.4} e^{-left(frac{E}{E_{c}}right)^{0.65}}$
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- ec :
desc : peak energy initial value : 200.0 min: 0.
- piv :
desc : the pivot energy initial value: 100. fix: True
- static info()
- class astromodels.functions.functions_1D.blackbody.NonDissipativePhotosphere_Deep(**kwargs)[source]
Bases:
Function1D
- description :
Non-dissipative photosphere of a GRB occuring BELOW the saturation radius. Acuner, Z., Ryde, F. & Yu, H.-F. Mon Not R Astron Soc 487, 5508–5519 (2019).
latex : $N_{mathrm{E}}=Kleft(frac{E}{E_{mathrm{pivot}}}right)^{0.66} e^{-left(frac{E}{E_{c}}right)}$
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- ec :
desc : peak energy initial value : 200.0 min: 0.
- piv :
desc : the pivot energy initial value: 100. fix: True
- static info()
astromodels.functions.functions_1D.extinction module
- class astromodels.functions.functions_1D.extinction.Standard_Rv(value)[source]
Bases:
Enum
An enumeration.
- LMC = 3.16
- MW = 3.08
- SMC = 2.93
- class astromodels.functions.functions_1D.extinction.ZDust(**kwargs)[source]
Bases:
Function1D
- description :
Extinction by dust grains from Pei (1992), suitable for IR, optical and UV energy bands, including the full energy ranges of the Swift UVOT and XMM-Newton OM detectors. Three models are included which characterize the extinction curves of (1) the Milky Way, (2) the LMC and (3) the SMC. The models can be modified by redshift and can therefore be applied to extragalactic sources. The transmission is set to unity shortward of 912 Angstroms in the rest frame of the dust. This is incorrect physically but does allow the model to be used in combination with an X-ray photoelectric absorption model such as phabs. Parameter 1 (method) describes which extinction curve (MW, LMC or SMC) will be constructed and should never be allowed to float during a fit. The extinction at V, A(V) = E(B-V) x Rv. Rv should typically remain frozen for a fit. Standard values for Rv are MW = 3.08, LMC = 3.16 and SMC = 2.93 (from table 2 of Pei 1992), although these may not be applicable to more distant dusty sources.
- parameters :
- e_bmv :
desc : color excess initial value : 1.0 min: 0 is_normalization : False delta : 0.1
- rv :
desc : ratio of total to selective extinction initial value : 3.08 is_normalization : False delta : 0.1 fix: True
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- properties:
- extinction_law:
desc: the abundance table for the model initial value: mw allowed values: - mw - lmc - smc
function: _set_extinction_law
- static info()
- astromodels.functions.functions_1D.extinction.pei(rlambda, a_b, a, lamb, b, n) float [source]
ported from XSPEC originally by Martin.Still@gsfc.nasa.gov
astromodels.functions.functions_1D.functions module
- class astromodels.functions.functions_1D.functions.DiracDelta(**kwargs)[source]
Bases:
Function1D
description :
return at zero_point
latex : $ value $
parameters :
value :
desc : Constant value initial value : 0
zero_point:
desc: value at which function is non-zero initial value : 0 fix : yes
- static info()
- class astromodels.functions.functions_1D.functions.Exponential_cutoff(**kwargs)[source]
Bases:
Function1D
description :
An exponential cutoff
latex : $ K exp{(-x/xc)} $
parameters :
K :
desc : Normalization initial value : 1.0 fix : no is_normalization : True
- xc :
desc : cutoff initial value : 100 min : 1
- static info()
- exception astromodels.functions.functions_1D.functions.GSLNotAvailable[source]
Bases:
ImportWarning
- class astromodels.functions.functions_1D.functions.GenericFunction(**kwargs)[source]
Bases:
Function1D
description :
Return k*f(x)
latex : $ k $
parameters :
k :
desc : Constant value initial value : 1
- property function
Get/set function
- static info()
- exception astromodels.functions.functions_1D.functions.InvalidUsageForFunction[source]
Bases:
Exception
- class astromodels.functions.functions_1D.functions.Log_parabola(**kwargs)[source]
Bases:
Function1D
description :
A log-parabolic function. NOTE that we use the high-energy convention of using the natural log in place of the base-10 logarithm. This means that beta is a factor 1 / log10(e) larger than what returned by those software using the other convention.
latex : $ K left( frac{x}{piv} right)^{alpha -beta log{left( frac{x}{piv} right)}} $
parameters :
- K :
desc : Normalization initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e5
- piv :
desc : Pivot (keep this fixed) initial value : 1 fix : yes
alpha :
desc : index initial value : -2.0
beta :
desc : curvature (positive is concave, negative is convex) initial value : 1.0
- static info()
- property peak_energy
Returns the peak energy in the nuFnu spectrum
- Returns:
peak energy in keV
- exception astromodels.functions.functions_1D.functions.NaimaNotAvailable[source]
Bases:
ImportWarning
- class astromodels.functions.functions_1D.functions.Sin(**kwargs)[source]
Bases:
Function1D
description :
A sinusodial function
latex : $ K~sin{(2pi f x + phi)} $
parameters :
K :
desc : Normalization initial value : 1 is_normalization : True
f :
desc : frequency initial value : 1.0 / (2 * np.pi) min : 0
phi :
desc : phase initial value : 0 min : -np.pi max : +np.pi unit: rad
- tests :
{ x : 0.0, function value: 0.0, tolerance: 1e-10}
{ x : 1.5707963267948966, function value: 1.0, tolerance: 1e-10}
- static info()
- class astromodels.functions.functions_1D.functions.StepFunction(**kwargs)[source]
Bases:
Function1D
description :
A function which is constant on the interval lower_bound - upper_bound and 0 outside the interval. The extremes of the interval are counted as part of the interval.
latex : $ f(x)=begin{cases}0 & x < text{lower_bound} \text{value} & text{lower_bound} le x le text{upper_bound} \ 0 & x > text{upper_bound} end{cases}$
parameters :
lower_bound :
desc : Lower bound for the interval initial value : 0
upper_bound :
desc : Upper bound for the interval initial value : 1
value :
desc : Value in the interval initial value : 1.0
- tests :
{ x : 0.5, function value: 1.0, tolerance: 1e-20}
{ x : -0.5, function value: 0, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.functions.StepFunctionUpper(**kwargs)[source]
Bases:
Function1D
description :
A function which is constant on the interval lower_bound - upper_bound and 0 outside the interval. The upper interval is open.
latex : $ f(x)=begin{cases}0 & x < text{lower_bound} \text{value} & text{lower_bound} le x le text{upper_bound} \ 0 & x > text{upper_bound} end{cases}$
parameters :
lower_bound :
desc : Lower bound for the interval initial value : 0 fix : yes
upper_bound :
desc : Upper bound for the interval initial value : 1 fix : yes
value :
desc : Value in the interval initial value : 1.0
- tests :
{ x : 0.5, function value: 1.0, tolerance: 1e-20}
{ x : -0.5, function value: 0, tolerance: 1e-20}
- static info()
astromodels.functions.functions_1D.polynomials module
- class astromodels.functions.functions_1D.polynomials.Constant(**kwargs)[source]
Bases:
Function1D
description :
Return k
latex : $ k $
parameters :
k :
desc : Constant value initial value : 0
- static info()
- class astromodels.functions.functions_1D.polynomials.Cubic(**kwargs)[source]
Bases:
Function1D
description :
A cubic function
latex : $ a + b cdot x + c cdot x^2 + d cdot x^3$
parameters :
a :
desc : coefficient initial value : 1
b :
desc : coefficient initial value : 1
c :
desc : coefficient initial value : 1
d :
desc : coefficient initial value : 1
- static info()
- class astromodels.functions.functions_1D.polynomials.Line(**kwargs)[source]
Bases:
Function1D
description :
A linear function
latex : $ b * x + a $
parameters :
a :
desc : intercept initial value : 0
b :
desc : coeff initial value : 1
- static info()
- class astromodels.functions.functions_1D.polynomials.Quadratic(**kwargs)[source]
Bases:
Function1D
description :
A Quadratic function
latex : $ a + b cdot x + c cdot x^2 $
parameters :
a :
desc : coefficient initial value : 1
b :
desc : coefficient initial value : 1
c :
desc : coefficient initial value : 1
- static info()
- class astromodels.functions.functions_1D.polynomials.Quartic(**kwargs)[source]
Bases:
Function1D
description :
A quartic function
latex : $ a + b cdot x + c cdot x^2 + d cdot x^3 + e cdot x^4$
parameters :
a :
desc : coefficient initial value : 1
b :
desc : coefficient initial value : 1
c :
desc : coefficient initial value : 1
d :
desc : coefficient initial value : 1
e :
desc : coefficient initial value : 1
- static info()
- astromodels.functions.functions_1D.polynomials.get_polynomial(order: int) Function1D [source]
get a polynomial function of order
- Parameters:
order (int) – the order of the polynomical
- Returns:
astromodels.functions.functions_1D.powerlaws module
- class astromodels.functions.functions_1D.powerlaws.Band(**kwargs)[source]
Bases:
Function1D
description :
Band model from Band et al., 1993, parametrized with the peak energy
latex : $K begin{cases} left(frac{x}{piv}right)^{alpha} exp left(-frac{(2+alpha) x}{x_{p}}right) & x leq (alpha-beta) frac{x_{p}}{(alpha+2)} \ left(frac{x}{piv}right)^{beta} exp (beta-alpha)left[frac{(alpha-beta) x_{p}}{piv(2+alpha)}right]^{alpha-beta} &x>(alpha-beta) frac{x_{p}}{(alpha+2)} end{cases} $
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : low-energy photon index initial value : -1.0 min : -1.5 max : 3
xp :
desc : peak in the x * x * N (nuFnu if x is a energy) initial value : 500 min : 10 transformation : log10
beta :
desc : high-energy photon index initial value : -2.0 min : -5.0 max : -1.6
piv :
desc : pivot energy initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Band_Calderone(**kwargs)[source]
Bases:
Function1D
description :
The Band model from Band et al. 1993, implemented however in a way which reduces the covariances between the parameters (Calderone et al., MNRAS, 448, 403C, 2015)
latex : $ text{(Calderone et al., MNRAS, 448, 403C, 2015)} $
parameters :
- alpha :
desc : The index for x smaller than the x peak initial value : -1 min : -10 max : 10
beta :
- descindex for x greater than the x peak (only if opt=1, i.e., for the
Band model)
initial value : -2.2 min : -7 max : -1
xp :
desc : position of the peak in the x*x*f(x) space (if x is energy, this is the nuFnu or SED space) initial value : 200.0 min : 1e-10 transformation : log10
F :
desc : integral in the band defined by a and b initial value : 1e-6 min: 1e-50 is_normalization : True transformation : log10
a:
desc : lower limit of the band in which the integral will be computed initial value : 1.0 min : 0 fix : yes
b:
desc : upper limit of the band in which the integral will be computed initial value : 10000.0 min : 0 fix : yes
opt :
desc : option to select the spectral model (0 corresponds to a cutoff power law, 1 to the Band model) initial value : 1 min : 0 max : 1 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Band_grbm(**kwargs)[source]
Bases:
Function1D
description :
Band model from Band et al., 1993, parametrized with the cutoff energy
latex : $ $
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : low-energy photon index initial value : -1.0 min : -1.5 max : 3
xc :
desc : cutoff of exp initial value : 500 min : 10 transformation : log10
beta :
desc : high-energy photon index initial value : -2.0 min : -5.0 max : -1.6
piv :
desc : pivot energy initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Broken_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A broken power law function
latex : $ f(x)= K~begin{cases}left( frac{x}{x_{b}} right)^{alpha} & x < x_{b} \ left( frac{x}{x_{b}} right)^{beta} & x ge x_{b} end{cases} $
parameters :
K :
desc : Normalization (differential flux at x_b) initial value : 1.0 min : 1e-50 is_normalization : True transformation : log10
xb :
desc : Break point initial value : 10 min : 1.0 transformation : log10
alpha :
desc : Index before the break xb initial value : -1.5 min : -10 max : 10
beta :
desc : Index after the break xb initial value : -2.5 min : -10 max : 10
piv :
desc : Pivot energy initial value : 1.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A power law multiplied by an exponential cutoff
latex : $ K~frac{x}{piv}^{index}~exp{-x/xc} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xc :
desc : Cutoff energy initial value : 10.0 transformation : log10 min: 1.0
- static info()
- class astromodels.functions.functions_1D.powerlaws.Cutoff_powerlaw_Ep(**kwargs)[source]
Bases:
Function1D
description :
A power law multiplied by an exponential cutoff parametrized with Ep
latex : $ K~frac{x}{piv}^{index}~exp{-x(2+index)/xp} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xp :
desc : peak in the x * x * N (nuFnu if x is a energy) initial value : 500 min : 10 max : 1e4 transformation : log10
- static info()
- class astromodels.functions.functions_1D.powerlaws.DoubleSmoothlyBrokenPowerlaw(**kwargs)[source]
Bases:
Function1D
description : A smoothly broken power law with two breaks as parameterized in Ravasio, M. E. et al. Astron Astrophys 613, A16 (2018).
latex : $begin{array}{l}begin{aligned}f(x)=& A x_{mathrm{b}}^{alpha_{1}}left[left[left(frac{x}{x_{mathrm{b}}}right)^{-alpha_{1} n_{1}}+left(frac{x}{x_{mathrm{b}}}right)^{-alpha_{2} n_{1}}right]^{frac{n_{2}}{n_{1}}}right.\&left.+left(frac{x}{x_{mathrm{j}}}right)^{-beta n_{2}} cdotleft[left(frac{x_{mathrm{j}}}{x_{mathrm{b}}}right)^{-alpha_{1} n_{1}}+left(frac{x_{mathrm{j}}}{x_{mathrm{b}}}right)^{-alpha_{2} n_{1}}right]^{frac{n_{2}}{n_{1}}}right]^{-frac{1}{n_{2}}}end{aligned}\text { where }\x_{mathrm{j}}=x_{mathrm{p}} cdotleft(-frac{alpha_{2}+2}{beta+2}right)^{frac{1}{left.beta-alpha_{2}right) n_{2}}}end{array}$
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha1 :
desc : photon index below xb initial value : -0.66
xb :
desc : break energy below xp initial value : 100 min : 1e-10 transformation : log10
n1 :
desc : curvature of the first break initial value : 2.0 min : 0 fix: True
alpha2 :
desc : photon index between xb and xp initial value : -1.5
xp :
desc : nuFnu peak initial value : 300 min : 1e-10 transformation : log10
n2 :
desc : curvature of the break at xp initial value : 2.0 min : 0 fix: True
beta :
desc : photon index above xp initial value : -2.5 max : 2
piv :
desc : pivot energy initial value : 1. fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Inverse_cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
- description :
A power law multiplied by an exponential cutoff [Note: instead of cutoff energy energy parameter xc, b = 1/xc is used]
latex : $K frac{x}{piv}^{index}exp{(-x~b)} $ parameters :
- K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
- piv :
desc : Pivot value initial value : 1 fix : yes
- index :
desc : Photon index initial value : -2 min : -10 max : 10
- b :
desc : inverse cutoff energy i.e 1/xc initial value : 1
- static info()
- class astromodels.functions.functions_1D.powerlaws.Powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A simple power-law
latex : $ K~frac{x}{piv}^{index} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2.01 min : -10 max : 10
- tests :
{ x : 10, function value: 0.01, tolerance: 1e-20}
{ x : 100, function value: 0.0001, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.powerlaws.Powerlaw_Eflux(**kwargs)[source]
Bases:
Function1D
- description :
A power-law where the normalization is the energy flux defined between a and b
latex : $F~frac{x}{piv}^{index} $ parameters :
- F :
desc : Normalization (energy flux at the between a and b) erg /cm2 s initial value : 1.e-5 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
- piv :
desc : Pivot value initial value : 1 fix : yes
- index :
desc : Photon index initial value : -2 min : -10 max : 10
- a :
desc : lower energy integral bound (keV) initial value : 1 min : 0 fix: yes
- b :
desc : upper energy integral bound (keV) initial value : 100 min : 0 fix: yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Powerlaw_flux(**kwargs)[source]
Bases:
Function1D
description :
A simple power-law with the photon flux in a band used as normalization. This will reduce the correlation between the index and the normalization.
latex : $ frac{F(gamma+1)} {b^{gamma+1} - a^{gamma+1}} (x)^{gamma}$
parameters :
F :
desc : Integral between a and b initial value : 1 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
index :
desc : Photon index initial value : -2 min : -10 max : 10
a :
desc : lower bound for the band in which computing the integral F initial value : 1.0 fix : yes
b :
desc : upper bound for the band in which computing the integral F initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.SmoothlyBrokenPowerLaw(**kwargs)[source]
Bases:
Function1D
description :
A Smoothly Broken Power Law
Latex : $ $
parameters :
K :
desc : normalization initial value : 1 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : power law index below the break initial value : -1 min : -1.5 max : 2
break_energy:
desc: location of the peak initial value : 300 fix : no min : 10 transformation : log10
break_scale :
desc: smoothness of the break initial value : 0.5 min : 0. max : 10. fix : yes
beta:
desc : power law index above the break initial value : -2. min : -5.0 max : -1.6
pivot:
desc: where the spectrum is normalized initial value : 100. fix: yes
- static info()
- class astromodels.functions.functions_1D.powerlaws.Super_cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A power law with a super-exponential cutoff
latex : $ K~frac{x}{piv}^{index}~exp{(-x/xc)^{gamma}} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 min : 1e-50 is_normalization : True transformation : log10
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xc :
desc : Cutoff energy initial value : 10.0 min : 1.0 transformation : log10
gamma :
desc : Index of the super-exponential cutoff initial value : 1.0 min : 0.1 max : 10.0
- static info()
Module contents
- class astromodels.functions.functions_1D.Band(**kwargs)[source]
Bases:
Function1D
description :
Band model from Band et al., 1993, parametrized with the peak energy
latex : $K begin{cases} left(frac{x}{piv}right)^{alpha} exp left(-frac{(2+alpha) x}{x_{p}}right) & x leq (alpha-beta) frac{x_{p}}{(alpha+2)} \ left(frac{x}{piv}right)^{beta} exp (beta-alpha)left[frac{(alpha-beta) x_{p}}{piv(2+alpha)}right]^{alpha-beta} &x>(alpha-beta) frac{x_{p}}{(alpha+2)} end{cases} $
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : low-energy photon index initial value : -1.0 min : -1.5 max : 3
xp :
desc : peak in the x * x * N (nuFnu if x is a energy) initial value : 500 min : 10 transformation : log10
beta :
desc : high-energy photon index initial value : -2.0 min : -5.0 max : -1.6
piv :
desc : pivot energy initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.Band_Calderone(**kwargs)[source]
Bases:
Function1D
description :
The Band model from Band et al. 1993, implemented however in a way which reduces the covariances between the parameters (Calderone et al., MNRAS, 448, 403C, 2015)
latex : $ text{(Calderone et al., MNRAS, 448, 403C, 2015)} $
parameters :
- alpha :
desc : The index for x smaller than the x peak initial value : -1 min : -10 max : 10
beta :
- descindex for x greater than the x peak (only if opt=1, i.e., for the
Band model)
initial value : -2.2 min : -7 max : -1
xp :
desc : position of the peak in the x*x*f(x) space (if x is energy, this is the nuFnu or SED space) initial value : 200.0 min : 1e-10 transformation : log10
F :
desc : integral in the band defined by a and b initial value : 1e-6 min: 1e-50 is_normalization : True transformation : log10
a:
desc : lower limit of the band in which the integral will be computed initial value : 1.0 min : 0 fix : yes
b:
desc : upper limit of the band in which the integral will be computed initial value : 10000.0 min : 0 fix : yes
opt :
desc : option to select the spectral model (0 corresponds to a cutoff power law, 1 to the Band model) initial value : 1 min : 0 max : 1 fix : yes
- static info()
- class astromodels.functions.functions_1D.Band_grbm(**kwargs)[source]
Bases:
Function1D
description :
Band model from Band et al., 1993, parametrized with the cutoff energy
latex : $ $
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : low-energy photon index initial value : -1.0 min : -1.5 max : 3
xc :
desc : cutoff of exp initial value : 500 min : 10 transformation : log10
beta :
desc : high-energy photon index initial value : -2.0 min : -5.0 max : -1.6
piv :
desc : pivot energy initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.Blackbody(**kwargs)[source]
Bases:
Function1D
- description :
A blackbody function
latex : $f(x) = K frac{x^2}{exp(frac{x}{kT}) -1} $
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- kT :
desc : temperature of the blackbody initial value : 30.0 min: 0.
- static info()
- class astromodels.functions.functions_1D.Broken_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A broken power law function
latex : $ f(x)= K~begin{cases}left( frac{x}{x_{b}} right)^{alpha} & x < x_{b} \ left( frac{x}{x_{b}} right)^{beta} & x ge x_{b} end{cases} $
parameters :
K :
desc : Normalization (differential flux at x_b) initial value : 1.0 min : 1e-50 is_normalization : True transformation : log10
xb :
desc : Break point initial value : 10 min : 1.0 transformation : log10
alpha :
desc : Index before the break xb initial value : -1.5 min : -10 max : 10
beta :
desc : Index after the break xb initial value : -2.5 min : -10 max : 10
piv :
desc : Pivot energy initial value : 1.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.Constant(**kwargs)[source]
Bases:
Function1D
description :
Return k
latex : $ k $
parameters :
k :
desc : Constant value initial value : 0
- static info()
- class astromodels.functions.functions_1D.Cubic(**kwargs)[source]
Bases:
Function1D
description :
A cubic function
latex : $ a + b cdot x + c cdot x^2 + d cdot x^3$
parameters :
a :
desc : coefficient initial value : 1
b :
desc : coefficient initial value : 1
c :
desc : coefficient initial value : 1
d :
desc : coefficient initial value : 1
- static info()
- class astromodels.functions.functions_1D.Cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A power law multiplied by an exponential cutoff
latex : $ K~frac{x}{piv}^{index}~exp{-x/xc} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xc :
desc : Cutoff energy initial value : 10.0 transformation : log10 min: 1.0
- static info()
- class astromodels.functions.functions_1D.Cutoff_powerlaw_Ep(**kwargs)[source]
Bases:
Function1D
description :
A power law multiplied by an exponential cutoff parametrized with Ep
latex : $ K~frac{x}{piv}^{index}~exp{-x(2+index)/xp} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xp :
desc : peak in the x * x * N (nuFnu if x is a energy) initial value : 500 min : 10 max : 1e4 transformation : log10
- static info()
- class astromodels.functions.functions_1D.DiracDelta(**kwargs)[source]
Bases:
Function1D
description :
return at zero_point
latex : $ value $
parameters :
value :
desc : Constant value initial value : 0
zero_point:
desc: value at which function is non-zero initial value : 0 fix : yes
- static info()
- class astromodels.functions.functions_1D.DoubleSmoothlyBrokenPowerlaw(**kwargs)[source]
Bases:
Function1D
description : A smoothly broken power law with two breaks as parameterized in Ravasio, M. E. et al. Astron Astrophys 613, A16 (2018).
latex : $begin{array}{l}begin{aligned}f(x)=& A x_{mathrm{b}}^{alpha_{1}}left[left[left(frac{x}{x_{mathrm{b}}}right)^{-alpha_{1} n_{1}}+left(frac{x}{x_{mathrm{b}}}right)^{-alpha_{2} n_{1}}right]^{frac{n_{2}}{n_{1}}}right.\&left.+left(frac{x}{x_{mathrm{j}}}right)^{-beta n_{2}} cdotleft[left(frac{x_{mathrm{j}}}{x_{mathrm{b}}}right)^{-alpha_{1} n_{1}}+left(frac{x_{mathrm{j}}}{x_{mathrm{b}}}right)^{-alpha_{2} n_{1}}right]^{frac{n_{2}}{n_{1}}}right]^{-frac{1}{n_{2}}}end{aligned}\text { where }\x_{mathrm{j}}=x_{mathrm{p}} cdotleft(-frac{alpha_{2}+2}{beta+2}right)^{frac{1}{left.beta-alpha_{2}right) n_{2}}}end{array}$
parameters :
K :
desc : Differential flux at the pivot energy initial value : 1e-4 min : 1e-50 is_normalization : True transformation : log10
alpha1 :
desc : photon index below xb initial value : -0.66
xb :
desc : break energy below xp initial value : 100 min : 1e-10 transformation : log10
n1 :
desc : curvature of the first break initial value : 2.0 min : 0 fix: True
alpha2 :
desc : photon index between xb and xp initial value : -1.5
xp :
desc : nuFnu peak initial value : 300 min : 1e-10 transformation : log10
n2 :
desc : curvature of the break at xp initial value : 2.0 min : 0 fix: True
beta :
desc : photon index above xp initial value : -2.5 max : 2
piv :
desc : pivot energy initial value : 1. fix : yes
- static info()
- class astromodels.functions.functions_1D.Exponential_cutoff(**kwargs)[source]
Bases:
Function1D
description :
An exponential cutoff
latex : $ K exp{(-x/xc)} $
parameters :
K :
desc : Normalization initial value : 1.0 fix : no is_normalization : True
- xc :
desc : cutoff initial value : 100 min : 1
- static info()
- class astromodels.functions.functions_1D.GenericFunction(**kwargs)[source]
Bases:
Function1D
description :
Return k*f(x)
latex : $ k $
parameters :
k :
desc : Constant value initial value : 1
- property function
Get/set function
- static info()
- class astromodels.functions.functions_1D.Inverse_cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
- description :
A power law multiplied by an exponential cutoff [Note: instead of cutoff energy energy parameter xc, b = 1/xc is used]
latex : $K frac{x}{piv}^{index}exp{(-x~b)} $ parameters :
- K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
- piv :
desc : Pivot value initial value : 1 fix : yes
- index :
desc : Photon index initial value : -2 min : -10 max : 10
- b :
desc : inverse cutoff energy i.e 1/xc initial value : 1
- static info()
- class astromodels.functions.functions_1D.Line(**kwargs)[source]
Bases:
Function1D
description :
A linear function
latex : $ b * x + a $
parameters :
a :
desc : intercept initial value : 0
b :
desc : coeff initial value : 1
- static info()
- class astromodels.functions.functions_1D.Log_parabola(**kwargs)[source]
Bases:
Function1D
description :
A log-parabolic function. NOTE that we use the high-energy convention of using the natural log in place of the base-10 logarithm. This means that beta is a factor 1 / log10(e) larger than what returned by those software using the other convention.
latex : $ K left( frac{x}{piv} right)^{alpha -beta log{left( frac{x}{piv} right)}} $
parameters :
- K :
desc : Normalization initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e5
- piv :
desc : Pivot (keep this fixed) initial value : 1 fix : yes
alpha :
desc : index initial value : -2.0
beta :
desc : curvature (positive is concave, negative is convex) initial value : 1.0
- static info()
- property peak_energy
Returns the peak energy in the nuFnu spectrum
- Returns:
peak energy in keV
- class astromodels.functions.functions_1D.ModifiedBlackbody(**kwargs)[source]
Bases:
Function1D
- description :
A blackbody function
latex : $f(x) = K frac{x^2}{exp(frac{x}{kT}) -1} $
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- kT :
desc : temperature of the blackbody initial value : 30.0 min: 0.
- static info()
- class astromodels.functions.functions_1D.NonDissipativePhotosphere(**kwargs)[source]
Bases:
Function1D
- description :
Non-dissipative photosphere of a GRB occuring above the saturation radius Acuner, Z., Ryde, F. & Yu, H.-F. Mon Not R Astron Soc 487, 5508–5519 (2019).
latex : $N_{mathrm{E}}=Kleft(frac{E}{E_{mathrm{pivot}}}right)^{0.4} e^{-left(frac{E}{E_{c}}right)^{0.65}}$
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- ec :
desc : peak energy initial value : 200.0 min: 0.
- piv :
desc : the pivot energy initial value: 100. fix: True
- static info()
- class astromodels.functions.functions_1D.NonDissipativePhotosphere_Deep(**kwargs)[source]
Bases:
Function1D
- description :
Non-dissipative photosphere of a GRB occuring BELOW the saturation radius. Acuner, Z., Ryde, F. & Yu, H.-F. Mon Not R Astron Soc 487, 5508–5519 (2019).
latex : $N_{mathrm{E}}=Kleft(frac{E}{E_{mathrm{pivot}}}right)^{0.66} e^{-left(frac{E}{E_{c}}right)}$
- parameters :
- K :
desc : initial value : 1e-4 min : 0. is_normalization : True
- ec :
desc : peak energy initial value : 200.0 min: 0.
- piv :
desc : the pivot energy initial value: 100. fix: True
- static info()
- class astromodels.functions.functions_1D.PhAbs(**kwargs)[source]
Bases:
Function1D
- description :
Photometric absorption (phabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- parameters :
- NH :
desc : absorbing column density in units of 1e22 particles per cm^2 initial value : 1.0 is_normalization : False transformation : log10 min : 1e-4 max : 1e4 delta : 0.1
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- properties:
- abundance_table:
desc: the abundance table for the model initial value: AG89 allowed values: - AG89 - ASPL function: _init_xsect
- property abundance_table_info
- static info()
- class astromodels.functions.functions_1D.Powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A simple power-law
latex : $ K~frac{x}{piv}^{index} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2.01 min : -10 max : 10
- tests :
{ x : 10, function value: 0.01, tolerance: 1e-20}
{ x : 100, function value: 0.0001, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.Powerlaw_Eflux(**kwargs)[source]
Bases:
Function1D
- description :
A power-law where the normalization is the energy flux defined between a and b
latex : $F~frac{x}{piv}^{index} $ parameters :
- F :
desc : Normalization (energy flux at the between a and b) erg /cm2 s initial value : 1.e-5 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
- piv :
desc : Pivot value initial value : 1 fix : yes
- index :
desc : Photon index initial value : -2 min : -10 max : 10
- a :
desc : lower energy integral bound (keV) initial value : 1 min : 0 fix: yes
- b :
desc : upper energy integral bound (keV) initial value : 100 min : 0 fix: yes
- static info()
- class astromodels.functions.functions_1D.Powerlaw_flux(**kwargs)[source]
Bases:
Function1D
description :
A simple power-law with the photon flux in a band used as normalization. This will reduce the correlation between the index and the normalization.
latex : $ frac{F(gamma+1)} {b^{gamma+1} - a^{gamma+1}} (x)^{gamma}$
parameters :
F :
desc : Integral between a and b initial value : 1 is_normalization : True transformation : log10 min : 1e-30 max : 1e3 delta : 0.1
index :
desc : Photon index initial value : -2 min : -10 max : 10
a :
desc : lower bound for the band in which computing the integral F initial value : 1.0 fix : yes
b :
desc : upper bound for the band in which computing the integral F initial value : 100.0 fix : yes
- static info()
- class astromodels.functions.functions_1D.Quadratic(**kwargs)[source]
Bases:
Function1D
description :
A Quadratic function
latex : $ a + b cdot x + c cdot x^2 $
parameters :
a :
desc : coefficient initial value : 1
b :
desc : coefficient initial value : 1
c :
desc : coefficient initial value : 1
- static info()
- class astromodels.functions.functions_1D.Quartic(**kwargs)[source]
Bases:
Function1D
description :
A quartic function
latex : $ a + b cdot x + c cdot x^2 + d cdot x^3 + e cdot x^4$
parameters :
a :
desc : coefficient initial value : 1
b :
desc : coefficient initial value : 1
c :
desc : coefficient initial value : 1
d :
desc : coefficient initial value : 1
e :
desc : coefficient initial value : 1
- static info()
- class astromodels.functions.functions_1D.Sin(**kwargs)[source]
Bases:
Function1D
description :
A sinusodial function
latex : $ K~sin{(2pi f x + phi)} $
parameters :
K :
desc : Normalization initial value : 1 is_normalization : True
f :
desc : frequency initial value : 1.0 / (2 * np.pi) min : 0
phi :
desc : phase initial value : 0 min : -np.pi max : +np.pi unit: rad
- tests :
{ x : 0.0, function value: 0.0, tolerance: 1e-10}
{ x : 1.5707963267948966, function value: 1.0, tolerance: 1e-10}
- static info()
- class astromodels.functions.functions_1D.SmoothlyBrokenPowerLaw(**kwargs)[source]
Bases:
Function1D
description :
A Smoothly Broken Power Law
Latex : $ $
parameters :
K :
desc : normalization initial value : 1 min : 1e-50 is_normalization : True transformation : log10
alpha :
desc : power law index below the break initial value : -1 min : -1.5 max : 2
break_energy:
desc: location of the peak initial value : 300 fix : no min : 10 transformation : log10
break_scale :
desc: smoothness of the break initial value : 0.5 min : 0. max : 10. fix : yes
beta:
desc : power law index above the break initial value : -2. min : -5.0 max : -1.6
pivot:
desc: where the spectrum is normalized initial value : 100. fix: yes
- static info()
- class astromodels.functions.functions_1D.Standard_Rv(value)[source]
Bases:
Enum
An enumeration.
- LMC = 3.16
- MW = 3.08
- SMC = 2.93
- class astromodels.functions.functions_1D.StepFunction(**kwargs)[source]
Bases:
Function1D
description :
A function which is constant on the interval lower_bound - upper_bound and 0 outside the interval. The extremes of the interval are counted as part of the interval.
latex : $ f(x)=begin{cases}0 & x < text{lower_bound} \text{value} & text{lower_bound} le x le text{upper_bound} \ 0 & x > text{upper_bound} end{cases}$
parameters :
lower_bound :
desc : Lower bound for the interval initial value : 0
upper_bound :
desc : Upper bound for the interval initial value : 1
value :
desc : Value in the interval initial value : 1.0
- tests :
{ x : 0.5, function value: 1.0, tolerance: 1e-20}
{ x : -0.5, function value: 0, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.StepFunctionUpper(**kwargs)[source]
Bases:
Function1D
description :
A function which is constant on the interval lower_bound - upper_bound and 0 outside the interval. The upper interval is open.
latex : $ f(x)=begin{cases}0 & x < text{lower_bound} \text{value} & text{lower_bound} le x le text{upper_bound} \ 0 & x > text{upper_bound} end{cases}$
parameters :
lower_bound :
desc : Lower bound for the interval initial value : 0 fix : yes
upper_bound :
desc : Upper bound for the interval initial value : 1 fix : yes
value :
desc : Value in the interval initial value : 1.0
- tests :
{ x : 0.5, function value: 1.0, tolerance: 1e-20}
{ x : -0.5, function value: 0, tolerance: 1e-20}
- static info()
- class astromodels.functions.functions_1D.Super_cutoff_powerlaw(**kwargs)[source]
Bases:
Function1D
description :
A power law with a super-exponential cutoff
latex : $ K~frac{x}{piv}^{index}~exp{(-x/xc)^{gamma}} $
parameters :
K :
desc : Normalization (differential flux at the pivot value) initial value : 1.0 min : 1e-50 is_normalization : True transformation : log10
piv :
desc : Pivot value initial value : 1 fix : yes
index :
desc : Photon index initial value : -2 min : -10 max : 10
xc :
desc : Cutoff energy initial value : 10.0 min : 1.0 transformation : log10
gamma :
desc : Index of the super-exponential cutoff initial value : 1.0 min : 0.1 max : 10.0
- static info()
- class astromodels.functions.functions_1D.TbAbs(**kwargs)[source]
Bases:
Function1D
- description :
Photometric absorption (Tbabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- parameters :
- NH :
desc : absorbing column density in units of 1e22 particles per cm^2 initial value : 1.0 is_normalization : True transformation : log10 min : 1e-4 max : 1e4 delta : 0.1
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- properties:
- abundance_table:
desc: the abundance table for the model initial value: WILM allowed values: - WILM - AG89 - ASPL function: _init_xsect
- property abundance_table_info
- static info()
- class astromodels.functions.functions_1D.WAbs(**kwargs)[source]
Bases:
Function1D
- description :
Photometric absorption (Wabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- parameters :
- NH :
desc : absorbing column density in units of 1e22 particles per cm^2 initial value : 1.0 is_normalization : True transformation : log10 min : 1e-4 max : 1e4 delta : 0.1
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- property abundance_table_info
- static info()
- class astromodels.functions.functions_1D.ZDust(**kwargs)[source]
Bases:
Function1D
- description :
Extinction by dust grains from Pei (1992), suitable for IR, optical and UV energy bands, including the full energy ranges of the Swift UVOT and XMM-Newton OM detectors. Three models are included which characterize the extinction curves of (1) the Milky Way, (2) the LMC and (3) the SMC. The models can be modified by redshift and can therefore be applied to extragalactic sources. The transmission is set to unity shortward of 912 Angstroms in the rest frame of the dust. This is incorrect physically but does allow the model to be used in combination with an X-ray photoelectric absorption model such as phabs. Parameter 1 (method) describes which extinction curve (MW, LMC or SMC) will be constructed and should never be allowed to float during a fit. The extinction at V, A(V) = E(B-V) x Rv. Rv should typically remain frozen for a fit. Standard values for Rv are MW = 3.08, LMC = 3.16 and SMC = 2.93 (from table 2 of Pei 1992), although these may not be applicable to more distant dusty sources.
- parameters :
- e_bmv :
desc : color excess initial value : 1.0 min: 0 is_normalization : False delta : 0.1
- rv :
desc : ratio of total to selective extinction initial value : 3.08 is_normalization : False delta : 0.1 fix: True
- redshift :
desc : the redshift of the source initial value : 0. is_normalization : False min : 0 max : 15 delta : 0.1 fix: True
- properties:
- extinction_law:
desc: the abundance table for the model initial value: mw allowed values: - mw - lmc - smc
function: _set_extinction_law
- static info()
- astromodels.functions.functions_1D.get_polynomial(order: int) Function1D [source]
get a polynomial function of order
- Parameters:
order (int) – the order of the polynomical
- Returns: