Asymm Gaussian on sphere

[3]:
# Parameters
func_name = "Asymm_Gaussian_on_sphere"

Description

[5]:
func.display()
  • description: A bidimensional Gaussian function on a sphere (in spherical coordinates) see https://en.wikipedia.org/wiki/Gaussian_function#Two-dimensional_Gaussian_function
  • formula: $n.a.$
  • parameters:
    • lon0:
      • value: 0.0
      • desc: Longitude of the center of the source
      • min_value: 0.0
      • max_value: 360.0
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True
    • lat0:
      • value: 0.0
      • desc: Latitude of the center of the source
      • min_value: -90.0
      • max_value: 90.0
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True
    • a:
      • value: 10.0
      • desc: Standard deviation of the Gaussian distribution (major axis)
      • min_value: 0.0
      • max_value: 20.0
      • unit:
      • is_normalization: False
      • delta: 1.0
      • free: True
    • e:
      • value: 0.9
      • desc: Excentricity of Gaussian ellipse
      • min_value: 0.0
      • max_value: 1.0
      • unit:
      • is_normalization: False
      • delta: 0.09000000000000001
      • free: True
    • theta:
      • value: 10.0
      • desc: inclination of major axis to a line of constant latitude
      • min_value: -90.0
      • max_value: 90.0
      • unit:
      • is_normalization: False
      • delta: 1.0
      • free: True

Shape

The shape of the function on the sky.

[6]:


m=func(ra, dec) hp.mollview(m, title=func_name, cmap="magma") hp.graticule(color="grey", lw=2)


../_images/notebooks_Asymm_Gaussian_on_sphere_8_0.png