Power law on sphere
[3]:
# Parameters
func_name = "Power_law_on_sphere"
Description
[5]:
func.display()
- description: A power law function on a sphere (in spherical coordinates)
- formula: $$ f(\vec{x}) = \left(\frac{180}{\pi}\right)^{-1.*index} \left\{\begin{matrix} 0.05^{index} & {\rm if} & ||\vec{x}-\vec{x}_0|| \le 0.05\\ ||\vec{x}-\vec{x}_0||^{index} & {\rm if} & 0.05 < ||\vec{x}-\vec{x}_0|| \le maxr \\ 0 & {\rm if} & ||\vec{x}-\vec{x}_0||>maxr\end{matrix}\right. $$
- parameters:
- lon0:
- value: 0.0
- desc: Longitude of the center of the source
- min_value: 0.0
- max_value: 360.0
- unit:
- is_normalization: False
- delta: 0.1
- free: True
- lat0:
- value: 0.0
- desc: Latitude of the center of the source
- min_value: -90.0
- max_value: 90.0
- unit:
- is_normalization: False
- delta: 0.1
- free: True
- index:
- value: -2.0
- desc: power law index
- min_value: -5.0
- max_value: -1.0
- unit:
- is_normalization: False
- delta: 0.2
- free: True
- maxr:
- value: 20.0
- desc: max radius
- min_value: None
- max_value: None
- unit:
- is_normalization: False
- delta: 2.0
- free: False
- minr:
- value: 0.05
- desc: radius below which the PL is approximated as a constant
- min_value: None
- max_value: None
- unit:
- is_normalization: False
- delta: 0.005000000000000001
- free: False
- lon0:
Shape
The shape of the function on the sky.
[6]:
m=func(ra, dec)
hp.mollview(m, title=func_name, cmap="magma")
hp.graticule(color="grey", lw=2)