Ellipse on sphere
[3]:
# Parameters
func_name = "Ellipse_on_sphere"
Description
[5]:
func.display()
- description: An ellipse function on a sphere (in spherical coordinates)
- formula: $$ f(\vec{x}) = \left(\frac{180}{\pi}\right)^2 \frac{1}{\pi~ a b} ~\left\{\begin{matrix} 1 & {\rm if}& {\rm | \vec{x} - \vec{x}_{f1}| + | \vec{x} - \vec{x}_{f2}| \le {\rm 2a}} \\ 0 & {\rm if}& {\rm | \vec{x} - \vec{x}_{f1}| + | \vec{x} - \vec{x}_{f2}| > {\rm 2a}} \end{matrix}\right. $$
- parameters:
- lon0:
- value: 0.0
- desc: Longitude of the center of the source
- min_value: 0.0
- max_value: 360.0
- unit:
- is_normalization: False
- delta: 0.1
- free: True
- lat0:
- value: 0.0
- desc: Latitude of the center of the source
- min_value: -90.0
- max_value: 90.0
- unit:
- is_normalization: False
- delta: 0.1
- free: True
- a:
- value: 15.0
- desc: semimajor axis of the ellipse
- min_value: 0.0
- max_value: 20.0
- unit:
- is_normalization: False
- delta: 1.5
- free: True
- e:
- value: 0.9
- desc: eccentricity of ellipse
- min_value: 0.0
- max_value: 1.0
- unit:
- is_normalization: False
- delta: 0.09000000000000001
- free: True
- theta:
- value: 0.0
- desc: inclination of semimajoraxis to a line of constant latitude
- min_value: -90.0
- max_value: 90.0
- unit:
- is_normalization: False
- delta: 0.1
- free: True
- lon0:
Shape
The shape of the function on the sky.
[6]:
m=func(ra, dec)
hp.mollview(m, title=func_name, cmap="magma")
hp.graticule(color="grey", lw=2)