Band Calderone

[3]:
# Parameters
func_name = "Band_Calderone"
wide_energy_range = True
x_scale = "log"
y_scale = "log"
linear_range = False

Description

[5]:
func.display()
  • description: The Band model from Band et al. 1993, implemented however in a way which reduces the covariances between the parameters (Calderone et al., MNRAS, 448, 403C, 2015)
  • formula: $ \text{(Calderone et al., MNRAS, 448, 403C, 2015)} $
  • parameters:
    • alpha:
      • value: -1.0
      • desc: The index for x smaller than the x peak
      • min_value: -10.0
      • max_value: 10.0
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: True
    • beta:
      • value: -2.2
      • desc: index for x greater than the x peak (only if opt=1, i.e., for the Band model)
      • min_value: -7.0
      • max_value: -1.0
      • unit:
      • is_normalization: False
      • delta: 0.22000000000000003
      • free: True
    • xp:
      • value: 200.00000000000003
      • desc: position of the peak in the x*x*f(x) space (if x is energy, this is the nuFnu or SED space)
      • min_value: 1e-10
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 20.000000000000004
      • free: True
    • F:
      • value: 1e-06
      • desc: integral in the band defined by a and b
      • min_value: 1e-50
      • max_value: None
      • unit:
      • is_normalization: True
      • delta: 1e-07
      • free: True
    • a:
      • value: 1.0
      • desc: lower limit of the band in which the integral will be computed
      • min_value: 0.0
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: False
    • b:
      • value: 10000.0
      • desc: upper limit of the band in which the integral will be computed
      • min_value: 0.0
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 1000.0
      • free: False
    • opt:
      • value: 1.0
      • desc: option to select the spectral model (0 corresponds to a cutoff power law, 1 to the Band model)
      • min_value: 0.0
      • max_value: 1.0
      • unit:
      • is_normalization: False
      • delta: 0.1
      • free: False

Shape

The shape of the function.

If this is not a photon model but a prior or linear function then ignore the units as these docs are auto-generated

[6]:
fig, ax = plt.subplots()


ax.plot(energy_grid, func(energy_grid), color=blue)

ax.set_xlabel("energy (keV)")
ax.set_ylabel("photon flux")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)

../_images/notebooks_Band_Calderone_8_0.png

F\(_{\nu}\)

The F\(_{\nu}\) shape of the photon model if this is not a photon model, please ignore this auto-generated plot

[7]:
fig, ax = plt.subplots()

ax.plot(energy_grid, energy_grid * func(energy_grid), red)


ax.set_xlabel("energy (keV)")
ax.set_ylabel(r"energy flux (F$_{\nu}$)")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)


../_images/notebooks_Band_Calderone_10_0.png

\(\nu\)F\(_{\nu}\)

The \(\nu\)F\(_{\nu}\) shape of the photon model if this is not a photon model, please ignore this auto-generated plot

[8]:
fig, ax = plt.subplots()

ax.plot(energy_grid, energy_grid**2 * func(energy_grid), color=green)


ax.set_xlabel("energy (keV)")
ax.set_ylabel(r"$\nu$F$_{\nu}$")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)

../_images/notebooks_Band_Calderone_12_0.png