TbAbs
[3]:
# Parameters
func_name = "TbAbs"
wide_energy_range = False
x_scale = "log"
y_scale = "log"
linear_range = False
Description
[5]:
func.display()
- description: Photometric absorption (Tbabs implementation), f(E) = exp(- NH * sigma(E)) contributed by Dominique Eckert
- formula: $n.a.$
- parameters:
- NH:
- value: 1.0
- desc: absorbing column density in units of 1e22 particles per cm^2
- min_value: 0.0001
- max_value: 10000.0
- unit:
- is_normalization: True
- delta: 0.1
- free: True
- redshift:
- value: 0.0
- desc: the redshift of the source
- min_value: 0.0
- max_value: 15.0
- unit:
- is_normalization: False
- delta: 0.1
- free: False
- abundance_table:
- value: WILM
- desc: the abundance table for the model
- allowed values: ['WILM', 'AG89', 'ASPL']
- defer: False
- function: _init_xsect
- NH:
Shape
The shape of the function.
If this is not a photon model but a prior or linear function then ignore the units as these docs are auto-generated
[6]:
fig, ax = plt.subplots()
ax.plot(energy_grid, func(energy_grid), color=blue)
ax.set_xlabel("energy (keV)")
ax.set_ylabel("photon flux")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)
F\(_{\nu}\)
The F\(_{\nu}\) shape of the photon model if this is not a photon model, please ignore this auto-generated plot
[7]:
fig, ax = plt.subplots()
ax.plot(energy_grid, energy_grid * func(energy_grid), red)
ax.set_xlabel("energy (keV)")
ax.set_ylabel(r"energy flux (F$_{\nu}$)")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)
\(\nu\)F\(_{\nu}\)
The \(\nu\)F\(_{\nu}\) shape of the photon model if this is not a photon model, please ignore this auto-generated plot
[8]:
fig, ax = plt.subplots()
ax.plot(energy_grid, energy_grid**2 * func(energy_grid), color=green)
ax.set_xlabel("energy (keV)")
ax.set_ylabel(r"$\nu$F$_{\nu}$")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)