Analyzing GRB 080916C

Alt text (NASA/Swift/Cruz deWilde)

To demonstrate the capabilities and features of 3ML in, we will go through a time-integrated and time-resolved analysis. This example serves as a standard way to analyze Fermi-GBM data with 3ML as well as a template for how you can design your instrument’s analysis pipeline with 3ML if you have similar data.

3ML provides utilities to reduce time series data to plugins in a correct and statistically justified way (e.g., background fitting of Poisson data is done with a Poisson likelihood). The approach is generic and can be extended. For more details, see the time series documentation.

[1]:
import warnings

warnings.simplefilter("ignore")
[2]:
%%capture
import matplotlib.pyplot as plt
import numpy as np

np.seterr(all="ignore")


from threeML import *
from threeML.io.package_data import get_path_of_data_file
[3]:

silence_warnings() %matplotlib inline from jupyterthemes import jtplot jtplot.style(context="talk", fscale=1, ticks=True, grid=False) set_threeML_style()

Examining the catalog

As with Swift and Fermi-LAT, 3ML provides a simple interface to the on-line Fermi-GBM catalog. Let’s get the information for GRB 080916C.

[4]:
gbm_catalog = FermiGBMBurstCatalog()
gbm_catalog.query_sources("GRB080916009")
22:57:14 INFO      The cache for fermigbrst does not yet exist. We will try to    get_heasarc_table_as_pandas.py:64
                  build it                                                                                         
                                                                                                                   
         INFO      Building cache for fermigbrst                                 get_heasarc_table_as_pandas.py:112
[4]:
Table length=1
name ra dec trigger_time t90
object float64 float64 float64 float64
GRB080916009 119.800 -56.600 54725.0088613 62.977

To aid in quickly replicating the catalog analysis, and thanks to the tireless efforts of the Fermi-GBM team, we have added the ability to extract the analysis parameters from the catalog as well as build an astromodels model with the best fit parameters baked in. Using this information, one can quickly run through the catalog an replicate the entire analysis with a script. Let’s give it a try.

[5]:
grb_info = gbm_catalog.get_detector_information()["GRB080916009"]

gbm_detectors = grb_info["detectors"]
source_interval = grb_info["source"]["fluence"]
background_interval = grb_info["background"]["full"]
best_fit_model = grb_info["best fit model"]["fluence"]
model = gbm_catalog.get_model(best_fit_model, "fluence")["GRB080916009"]
[6]:
model
[6]:
Model summary:

N
Point sources 1
Extended sources 0
Particle sources 0


Free parameters (5):

value min_value max_value unit
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.K 0.012255 0.0 None keV-1 s-1 cm-2
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.alpha -1.130424 -1.5 2.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_energy 309.2031 10.0 None keV
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_scale 0.3 0.0 10.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.beta -2.096931 -5.0 -1.6


Fixed parameters (3):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)

Downloading the data

We provide a simple interface to download the Fermi-GBM data. Using the information from the catalog that we have extracted, we can download just the data from the detectors that were used for the catalog analysis. This will download the CSPEC, TTE and instrument response files from the on-line database.

[7]:
dload = download_GBM_trigger_data("bn080916009", detectors=gbm_detectors)

Let’s first examine the catalog fluence fit. Using the TimeSeriesBuilder, we can fit the background, set the source interval, and create a 3ML plugin for the analysis. We will loop through the detectors, set their appropriate channel selections, and ensure there are enough counts in each bin to make the PGStat profile likelihood valid.

  • First we use the CSPEC data to fit the background using the background selections. We use CSPEC because it has a longer duration for fitting the background.

  • The background is saved to an HDF5 file that stores the polynomial coefficients and selections which we can read in to the TTE file later.

  • The light curve is plotted.

  • The source selection from the catalog is set and DispersionSpectrumLike plugin is created.

  • The plugin has the standard GBM channel selections for spectral analysis set.

[8]:
fluence_plugins = []
time_series = {}
for det in gbm_detectors:
    ts_cspec = TimeSeriesBuilder.from_gbm_cspec_or_ctime(
        det, cspec_or_ctime_file=dload[det]["cspec"], rsp_file=dload[det]["rsp"]
    )

    ts_cspec.set_background_interval(*background_interval.split(","))
    ts_cspec.save_background(f"{det}_bkg.h5", overwrite=True)

    ts_tte = TimeSeriesBuilder.from_gbm_tte(
        det,
        tte_file=dload[det]["tte"],
        rsp_file=dload[det]["rsp"],
        restore_background=f"{det}_bkg.h5",
    )

    time_series[det] = ts_tte

    ts_tte.set_active_time_interval(source_interval)

    ts_tte.view_lightcurve(-40, 100)

    fluence_plugin = ts_tte.to_spectrumlike()

    if det.startswith("b"):
        fluence_plugin.set_active_measurements("250-30000")

    else:
        fluence_plugin.set_active_measurements("9-900")

    fluence_plugin.rebin_on_background(1.0)

    fluence_plugins.append(fluence_plugin)
22:58:11 INFO      Auto-determined polynomial order: 0                                binned_spectrum_series.py:389
22:58:20 INFO      None 0-order polynomial fit with the mle method                               time_series.py:458
         INFO      Saved fitted background to n3_bkg.h5                                         time_series.py:1064
         INFO      Saved background to n3_bkg.h5                                         time_series_builder.py:471
22:58:21 INFO      Successfully restored fit from n3_bkg.h5                              time_series_builder.py:171
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:290
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
22:58:23 INFO      Now using 120 bins                                                          SpectrumLike.py:1739
22:58:25 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:389
22:58:35 INFO      None 1-order polynomial fit with the mle method                               time_series.py:458
         INFO      Saved fitted background to n4_bkg.h5                                         time_series.py:1064
         INFO      Saved background to n4_bkg.h5                                         time_series_builder.py:471
         INFO      Successfully restored fit from n4_bkg.h5                              time_series_builder.py:171
         INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:290
22:58:36 INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
22:58:38 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:389
22:58:49 INFO      None 1-order polynomial fit with the mle method                               time_series.py:458
         INFO      Saved fitted background to b0_bkg.h5                                         time_series.py:1064
         INFO      Saved background to b0_bkg.h5                                         time_series_builder.py:471
22:58:50 INFO      Successfully restored fit from b0_bkg.h5                              time_series_builder.py:171
         INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:290
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:490
         INFO      - observation: poisson                                                       SpectrumLike.py:491
         INFO      - background: gaussian                                                       SpectrumLike.py:492
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
../_images/notebooks_grb080916C_12_42.png
../_images/notebooks_grb080916C_12_43.png
../_images/notebooks_grb080916C_12_44.png

Setting up the fit

Let’s see if we can reproduce the results from the catalog.

Set priors for the model

We will fit the spectrum using Bayesian analysis, so we must set priors on the model parameters.

[9]:
model.GRB080916009.spectrum.main.shape.alpha.prior = Truncated_gaussian(
    lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.beta.prior = Truncated_gaussian(
    lower_bound=-5, upper_bound=-1.6, mu=-2.25, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.break_energy.prior = Log_normal(mu=2, sigma=1)
model.GRB080916009.spectrum.main.shape.break_energy.bounds = (None, None)
model.GRB080916009.spectrum.main.shape.K.prior = Log_uniform_prior(
    lower_bound=1e-3, upper_bound=1e1
)
model.GRB080916009.spectrum.main.shape.break_scale.prior = Log_uniform_prior(
    lower_bound=1e-4, upper_bound=10
)

Clone the model and setup the Bayesian analysis class

Next, we clone the model we built from the catalog so that we can look at the results later and fit the cloned model. We pass this model and the DataList of the plugins to a BayesianAnalysis class and set the sampler to MultiNest.

[10]:
new_model = clone_model(model)

bayes = BayesianAnalysis(new_model, DataList(*fluence_plugins))

# share spectrum gives a linear speed up when
# spectrumlike plugins have the same RSP input energies
bayes.set_sampler("multinest", share_spectrum=True)
22:58:51 INFO      sampler set to multinest                                                bayesian_analysis.py:202

Examine at the catalog fitted model

We can quickly examine how well the catalog fit matches the data. There appears to be a discrepancy between the data and the model! Let’s refit to see if we can fix it.

[11]:
fig = display_spectrum_model_counts(bayes, min_rate=20, step=False)
../_images/notebooks_grb080916C_18_0.png

Run the sampler

We let MultiNest condition the model on the data

[12]:
bayes.sampler.setup(n_live_points=400)
bayes.sample()
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  400
 dimensionality =    5
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -3100.7881721717995      +/-  0.22134783228260471
 Total Likelihood Evaluations:        27495
 Sampling finished. Exiting MultiNest

22:59:11 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
GRB080916009...K (1.467 -0.018 +0.021) x 10^-2 1 / (keV s cm2)
GRB080916009...alpha -1.0921 -0.0008 +0.04
GRB080916009...break_energy (1.88 +0.15 +0.8) x 10^2 keV
GRB080916009...break_scale (0.0 +1.8 +3.5) x 10^-1
GRB080916009...beta -1.96 -0.26 -0.05
Values of -log(posterior) at the minimum:

-log(posterior)
n3 -1019.832436
n4 -1010.904188
b0 -1050.827196
total -3081.563820
Values of statistical measures:

statistical measures
AIC 6173.298095
BIC 6192.530306
DIC 6180.668774
PDIC 4.612109
log(Z) -1346.655193

Now our model seems to match much better with the data!

[13]:
bayes.restore_median_fit()
fig = display_spectrum_model_counts(bayes, min_rate=20)
         INFO      fit restored to median of posterior                                          sampler_base.py:164
../_images/notebooks_grb080916C_22_1.png

But how different are we from the catalog model? Let’s plot our fit along with the catalog model. Luckily, 3ML can handle all the units for is

[14]:
conversion = u.Unit("keV2/(cm2 s keV)").to("erg2/(cm2 s keV)")
energy_grid = np.logspace(1, 4, 100) * u.keV
vFv = (energy_grid**2 * model.get_point_source_fluxes(0, energy_grid)).to(
    "erg2/(cm2 s keV)"
)
[15]:
fig = plot_spectra(bayes.results, flux_unit="erg2/(cm2 s keV)")
ax = fig.get_axes()[0]
_ = ax.loglog(energy_grid, vFv, color="blue", label="catalog model")
../_images/notebooks_grb080916C_25_2.png

Time Resolved Analysis

Now that we have examined fluence fit, we can move to performing a time-resolved analysis.

Selecting a temporal binning

We first get the brightest NaI detector and create time bins via the Bayesian blocks algorithm. We can use the fitted background to make sure that our intervals are chosen in an unbiased way.

[16]:
n3 = time_series["n3"]
[17]:
n3.create_time_bins(0, 60, method="bayesblocks", use_background=True, p0=0.2)
23:01:17 INFO      Created 15 bins via bayesblocks                                       time_series_builder.py:708

Sometimes, glitches in the GBM data cause spikes in the data that the Bayesian blocks algorithm detects as fast changes in the count rate. We will have to remove those intervals manually.

Note: In the future, 3ML will provide an automated method to remove these unwanted spikes.

[18]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_30_0.png
[19]:
bad_bins = []
for i, w in enumerate(n3.bins.widths):
    if w < 5e-2:
        bad_bins.append(i)


edges = [n3.bins.starts[0]]

for i, b in enumerate(n3.bins):
    if i not in bad_bins:
        edges.append(b.stop)

starts = edges[:-1]
stops = edges[1:]


n3.create_time_bins(starts, stops, method="custom")
         INFO      Created 12 bins via custom                                            time_series_builder.py:708

Now our light curve looks much more acceptable.

[20]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_33_0.png

The time series objects can read time bins from each other, so we will map these time bins onto the other detectors’ time series and create a list of time plugins for each detector and each time bin created above.

[21]:
time_resolved_plugins = {}

for k, v in time_series.items():
    v.read_bins(n3)
    time_resolved_plugins[k] = v.to_spectrumlike(from_bins=True)
         INFO      Created 12 bins via custom                                            time_series_builder.py:708
23:01:18 INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:290
         INFO      Created 12 bins via custom                                            time_series_builder.py:708
         INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:290
         INFO      Created 12 bins via custom                                            time_series_builder.py:708
23:01:19 INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:290

Setting up the model

For the time-resolved analysis, we will fit the classic Band function to the data. We will set some principled priors.

[22]:
band = Band()
band.alpha.prior = Truncated_gaussian(lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5)
band.beta.prior = Truncated_gaussian(lower_bound=-5, upper_bound=-1.6, mu=-2, sigma=0.5)
band.xp.prior = Log_normal(mu=2, sigma=1)
band.xp.bounds = (None, None)
band.K.prior = Log_uniform_prior(lower_bound=1e-10, upper_bound=1e3)
ps = PointSource("grb", 0, 0, spectral_shape=band)
band_model = Model(ps)

Perform the fits

One way to perform Bayesian spectral fits to all the intervals is to loop through each one. There can are many ways to do this, so find an analysis pattern that works for you.

[23]:
models = []
results = []
analysis = []
for interval in range(12):
    # clone the model above so that we have a separate model
    # for each fit

    this_model = clone_model(band_model)

    # for each detector set up the plugin
    # for this time interval

    this_data_list = []
    for k, v in time_resolved_plugins.items():
        pi = v[interval]

        if k.startswith("b"):
            pi.set_active_measurements("250-30000")
        else:
            pi.set_active_measurements("9-900")

        pi.rebin_on_background(1.0)

        this_data_list.append(pi)

    # create a data list

    dlist = DataList(*this_data_list)

    # set up the sampler and fit

    bayes = BayesianAnalysis(this_model, dlist)

    # get some speed with share spectrum
    bayes.set_sampler("multinest", share_spectrum=True)
    bayes.sampler.setup(n_live_points=500)
    bayes.sample()

    # at this stage we coudl also
    # save the analysis result to
    # disk but we will simply hold
    # onto them in memory

    analysis.append(bayes)
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 107 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -788.65905072157466      +/-  0.17841336460984905
 Total Likelihood Evaluations:        15787
 Sampling finished. Exiting MultiNest

23:01:31 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (3.5 -0.5 +0.7) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-5.8 -1.0 +1.5) x 10^-1
grb.spectrum.main.Band.xp (3.2 -0.5 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -2.04 -0.4 +0.11
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval0 -250.261638
n4_interval0 -268.005932
b0_interval0 -285.703224
total -803.970794
Values of statistical measures:

statistical measures
AIC 1616.054903
BIC 1631.463720
DIC 1570.380534
PDIC 2.502667
log(Z) -342.510274
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1974.3529309397813      +/-  0.23619326152835496
 Total Likelihood Evaluations:        22922
 Sampling finished. Exiting MultiNest

23:01:48 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (5.091 -0.012 +0.06) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-7.4500 -0.06 +0.0031) x 10^-1
grb.spectrum.main.Band.xp (3.8052 -0.12 -0.0013) x 10^2 keV
grb.spectrum.main.Band.beta -1.7923 +0.0020 +0.016
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval1 -645.514550
n4_interval1 -643.489494
b0_interval1 -690.408206
total -1979.412250
Values of statistical measures:

statistical measures
AIC 3966.937814
BIC 3982.346632
DIC 3917.516285
PDIC 0.989985
log(Z) -857.450583
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 115 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -908.95526290612497      +/-  0.19918528323311785
 Total Likelihood Evaluations:        20413
 Sampling finished. Exiting MultiNest

23:02:02 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.84 -0.4 +0.14) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.92 -1.1 +0.31) x 10^-1
grb.spectrum.main.Band.xp (4.2 -0.5 +2.8) x 10^2 keV
grb.spectrum.main.Band.beta -1.81 -0.5 +0.05
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval2 -288.465710
n4_interval2 -311.286092
b0_interval2 -323.699338
total -923.451140
Values of statistical measures:

statistical measures
AIC 1855.015594
BIC 1870.424412
DIC 1805.484287
PDIC 1.650166
log(Z) -394.754255
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 109 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -792.48946267470023      +/-  0.18510546944558171
 Total Likelihood Evaluations:        17692
 Sampling finished. Exiting MultiNest

23:02:13 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.95 -0.17 +0.6) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.4 -0.4 +1.0) x 10^-1
grb.spectrum.main.Band.xp (2.96 -0.7 +0.34) x 10^2 keV
grb.spectrum.main.Band.beta -1.91 +0.04 +0.14
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval3 -242.254457
n4_interval3 -261.851411
b0_interval3 -298.847099
total -802.952967
Values of statistical measures:

statistical measures
AIC 1614.019248
BIC 1629.428066
DIC 1571.725700
PDIC 1.654590
log(Z) -344.173801
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
23:02:14 INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -2271.4013348635499      +/-  0.20239646827124147
 Total Likelihood Evaluations:        19977
 Sampling finished. Exiting MultiNest

23:02:26 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.07 -0.08 +0.13) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.77 -0.24 +0.5) x 10^-1
grb.spectrum.main.Band.xp (3.9 +/- 0.4) x 10^2 keV
grb.spectrum.main.Band.beta -1.96 +/- 0.06
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval4 -757.198020
n4_interval4 -746.558302
b0_interval4 -778.429692
total -2282.186014
Values of statistical measures:

statistical measures
AIC 4572.485343
BIC 4587.894161
DIC 4526.456549
PDIC 2.793861
log(Z) -986.457066
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1572.8379336512810      +/-  0.19009096217207097
 Total Likelihood Evaluations:        20872
 Sampling finished. Exiting MultiNest

23:02:38 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.82 -0.24 +0.12) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.1 -0.6 +0.4) x 10^-1
grb.spectrum.main.Band.xp (4.16 -0.34 +0.9) x 10^2 keV
grb.spectrum.main.Band.beta -2.13 -0.31 +0.09
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval5 -523.552781
n4_interval5 -527.678010
b0_interval5 -536.696935
total -1587.927726
Values of statistical measures:

statistical measures
AIC 3183.968767
BIC 3199.377584
DIC 3137.012038
PDIC 3.433953
log(Z) -683.074836
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1779.7947536540012      +/-  0.20592974147790152
 Total Likelihood Evaluations:        19592
 Sampling finished. Exiting MultiNest

23:02:52 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.95 -0.05 +1.7) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha -1.12 -0.05 +0.5
grb.spectrum.main.Band.xp (3.4 -1.7 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -1.89 -0.06 +0.18
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval6 -593.150150
n4_interval6 -581.642232
b0_interval6 -610.517788
total -1785.310171
Values of statistical measures:

statistical measures
AIC 3578.733656
BIC 3594.142473
DIC 3495.722983
PDIC -40.777663
log(Z) -772.955040
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1938.9720369688273      +/-  0.18982528363775455
 Total Likelihood Evaluations:        21037
 Sampling finished. Exiting MultiNest

23:03:04 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.66 -0.11 +0.10) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha -1.04 -0.05 +0.04
grb.spectrum.main.Band.xp (4.3 -0.5 +0.9) x 10^2 keV
grb.spectrum.main.Band.beta -2.27 -0.4 +0.14
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval7 -640.867944
n4_interval7 -650.481960
b0_interval7 -662.309470
total -1953.659375
Values of statistical measures:

statistical measures
AIC 3915.432064
BIC 3930.840881
DIC 3869.346733
PDIC 3.533885
log(Z) -842.084856
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -2054.3764041470190      +/-  0.18884837770541682
 Total Likelihood Evaluations:        19282
 Sampling finished. Exiting MultiNest

23:03:17 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.52 -0.08 +0.16) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.5 -0.5 +0.8) x 10^-1
grb.spectrum.main.Band.xp (3.8 -0.6 +0.4) x 10^2 keV
grb.spectrum.main.Band.beta -2.32 -0.18 +0.21
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval8 -698.434599
n4_interval8 -666.207579
b0_interval8 -702.375280
total -2067.017458
Values of statistical measures:

statistical measures
AIC 4142.148231
BIC 4157.557048
DIC 4097.442549
PDIC 3.045416
log(Z) -892.204336
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1878.4023371054529      +/-  0.14302829647889262
 Total Likelihood Evaluations:        13388
 Sampling finished. Exiting MultiNest

23:03:25 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.07 -0.29 +1.4) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.7 -1.5 +4) x 10^-1
grb.spectrum.main.Band.xp (1.2 -0.5 +0.4) x 10^2 keV
grb.spectrum.main.Band.beta -1.87 -0.34 +0.15
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval9 -617.095666
n4_interval9 -616.260893
b0_interval9 -648.547760
total -1881.904318
Values of statistical measures:

statistical measures
AIC 3771.921951
BIC 3787.330768
DIC 3692.886255
PDIC -54.219346
log(Z) -815.779770
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1322.3251398048114      +/-  0.16899122660723453
 Total Likelihood Evaluations:        15304
 Sampling finished. Exiting MultiNest

23:03:35 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.00 -0.35 +0.5) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-7.5 +/- 1.3) x 10^-1
grb.spectrum.main.Band.xp (2.2 -0.4 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -1.95 -0.25 +0.07
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval10 -437.558558
n4_interval10 -433.380356
b0_interval10 -460.928265
total -1331.867179
Values of statistical measures:

statistical measures
AIC 2671.847672
BIC 2687.256489
DIC 2633.508541
PDIC 0.291402
log(Z) -574.278511
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1247
         INFO      Now using 120 bins                                                          SpectrumLike.py:1739
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1247
         INFO      Now using 119 bins                                                          SpectrumLike.py:1739
         INFO      sampler set to multinest                                                bayesian_analysis.py:202
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -812.01821106508737      +/-  0.14761952222093477
 Total Likelihood Evaluations:        12362
 Sampling finished. Exiting MultiNest

23:03:45 INFO      fit restored to maximum of posterior                                         sampler_base.py:178
         INFO      fit restored to maximum of posterior                                         sampler_base.py:178
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.7 -0.8 +1.4) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-5.0 -2.0 +2.5) x 10^-1
grb.spectrum.main.Band.xp (1.30 -0.23 +0.33) x 10^2 keV
grb.spectrum.main.Band.beta -2.12 -0.5 +0.13
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval11 -272.322554
n4_interval11 -255.869941
b0_interval11 -292.337228
total -820.529723
Values of statistical measures:

statistical measures
AIC 1649.172759
BIC 1664.581577
DIC 1618.299121
PDIC 1.221754
log(Z) -352.655028

Examine the fits

Now we can look at the fits in count space to make sure they are ok.

[24]:
for a in analysis:
    a.restore_median_fit()
    _ = display_spectrum_model_counts(a, min_rate=[20, 20, 20], step=False)
         INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:46 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:47 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:48 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:49 INFO      fit restored to median of posterior                                          sampler_base.py:164
         INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:50 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:52 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:53 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:54 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:55 INFO      fit restored to median of posterior                                          sampler_base.py:164
23:03:57 INFO      fit restored to median of posterior                                          sampler_base.py:164
../_images/notebooks_grb080916C_41_12.png
../_images/notebooks_grb080916C_41_13.png
../_images/notebooks_grb080916C_41_14.png
../_images/notebooks_grb080916C_41_15.png
../_images/notebooks_grb080916C_41_16.png
../_images/notebooks_grb080916C_41_17.png
../_images/notebooks_grb080916C_41_18.png
../_images/notebooks_grb080916C_41_19.png
../_images/notebooks_grb080916C_41_20.png
../_images/notebooks_grb080916C_41_21.png
../_images/notebooks_grb080916C_41_22.png
../_images/notebooks_grb080916C_41_23.png

Finally, we can plot the models together to see how the spectra evolve with time.

[25]:
fig = plot_spectra(
    *[a.results for a in analysis[::1]],
    flux_unit="erg2/(cm2 s keV)",
    fit_cmap="viridis",
    contour_cmap="viridis",
    contour_style_kwargs=dict(alpha=0.1),
)
../_images/notebooks_grb080916C_43_13.png

This example can serve as a template for performing analysis on GBM data. However, as 3ML provides an abstract interface and modular building blocks, similar analysis pipelines can be built for any time series data.