Analyzing GRB 080916C

Alt text (NASA/Swift/Cruz deWilde)

To demonstrate the capabilities and features of 3ML in, we will go through a time-integrated and time-resolved analysis. This example serves as a standard way to analyze Fermi-GBM data with 3ML as well as a template for how you can design your instrument’s analysis pipeline with 3ML if you have similar data.

3ML provides utilities to reduce time series data to plugins in a correct and statistically justified way (e.g., background fitting of Poisson data is done with a Poisson likelihood). The approach is generic and can be extended. For more details, see the time series documentation.

[1]:
import warnings

warnings.simplefilter("ignore")
[2]:
%%capture
import matplotlib.pyplot as plt
import numpy as np

np.seterr(all="ignore")


from threeML import *
from threeML.io.package_data import get_path_of_data_file
[3]:

silence_warnings() %matplotlib inline from jupyterthemes import jtplot jtplot.style(context="talk", fscale=1, ticks=True, grid=False) set_threeML_style()

Examining the catalog

As with Swift and Fermi-LAT, 3ML provides a simple interface to the on-line Fermi-GBM catalog. Let’s get the information for GRB 080916C.

[4]:
gbm_catalog = FermiGBMBurstCatalog()
gbm_catalog.query_sources("GRB080916009")
22:47:04 INFO      The cache for fermigbrst does not yet exist. We will try to    get_heasarc_table_as_pandas.py:63
                  build it                                                                                         
                                                                                                                   
         INFO      Building cache for fermigbrst                                 get_heasarc_table_as_pandas.py:103
[4]:
Table length=1
name ra dec trigger_time t90
object float64 float64 float64 float64
GRB080916009 119.800 -56.600 54725.0088613 62.977

To aid in quickly replicating the catalog analysis, and thanks to the tireless efforts of the Fermi-GBM team, we have added the ability to extract the analysis parameters from the catalog as well as build an astromodels model with the best fit parameters baked in. Using this information, one can quickly run through the catalog an replicate the entire analysis with a script. Let’s give it a try.

[5]:
grb_info = gbm_catalog.get_detector_information()["GRB080916009"]

gbm_detectors = grb_info["detectors"]
source_interval = grb_info["source"]["fluence"]
background_interval = grb_info["background"]["full"]
best_fit_model = grb_info["best fit model"]["fluence"]
model = gbm_catalog.get_model(best_fit_model, "fluence")["GRB080916009"]
[6]:
model
[6]:
Model summary:

N
Point sources 1
Extended sources 0
Particle sources 0


Free parameters (5):

value min_value max_value unit
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.K 0.012255 0.0 None keV-1 s-1 cm-2
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.alpha -1.130424 -1.5 2.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_energy 309.2031 10.0 None keV
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_scale 0.3 0.0 10.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.beta -2.096931 -5.0 -1.6


Fixed parameters (3):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)

Downloading the data

We provide a simple interface to download the Fermi-GBM data. Using the information from the catalog that we have extracted, we can download just the data from the detectors that were used for the catalog analysis. This will download the CSPEC, TTE and instrument response files from the on-line database.

[7]:
dload = download_GBM_trigger_data("bn080916009", detectors=gbm_detectors)

Let’s first examine the catalog fluence fit. Using the TimeSeriesBuilder, we can fit the background, set the source interval, and create a 3ML plugin for the analysis. We will loop through the detectors, set their appropriate channel selections, and ensure there are enough counts in each bin to make the PGStat profile likelihood valid.

  • First we use the CSPEC data to fit the background using the background selections. We use CSPEC because it has a longer duration for fitting the background.

  • The background is saved to an HDF5 file that stores the polynomial coefficients and selections which we can read in to the TTE file later.

  • The light curve is plotted.

  • The source selection from the catalog is set and DispersionSpectrumLike plugin is created.

  • The plugin has the standard GBM channel selections for spectral analysis set.

[8]:
fluence_plugins = []
time_series = {}
for det in gbm_detectors:
    ts_cspec = TimeSeriesBuilder.from_gbm_cspec_or_ctime(
        det, cspec_or_ctime_file=dload[det]["cspec"], rsp_file=dload[det]["rsp"]
    )

    ts_cspec.set_background_interval(*background_interval.split(","))
    ts_cspec.save_background(f"{det}_bkg.h5", overwrite=True)

    ts_tte = TimeSeriesBuilder.from_gbm_tte(
        det,
        tte_file=dload[det]["tte"],
        rsp_file=dload[det]["rsp"],
        restore_background=f"{det}_bkg.h5",
    )

    time_series[det] = ts_tte

    ts_tte.set_active_time_interval(source_interval)

    ts_tte.view_lightcurve(-40, 100)

    fluence_plugin = ts_tte.to_spectrumlike()

    if det.startswith("b"):
        fluence_plugin.set_active_measurements("250-30000")

    else:
        fluence_plugin.set_active_measurements("9-900")

    fluence_plugin.rebin_on_background(1.0)

    fluence_plugins.append(fluence_plugin)
22:48:06 INFO      Auto-determined polynomial order: 0                                binned_spectrum_series.py:356
22:48:12 INFO      None 0-order polynomial fit with the mle method                               time_series.py:426
         INFO      Saved fitted background to n3_bkg.h5                                          time_series.py:972
         INFO      Saved background to n3_bkg.h5                                         time_series_builder.py:430
         INFO      Successfully restored fit from n3_bkg.h5                              time_series_builder.py:166
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:274
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:478
         INFO      - observation: poisson                                                       SpectrumLike.py:479
         INFO      - background: gaussian                                                       SpectrumLike.py:480
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
22:48:16 INFO      Now using 120 bins                                                          SpectrumLike.py:1698
22:48:17 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:356
22:48:23 INFO      None 1-order polynomial fit with the mle method                               time_series.py:426
         INFO      Saved fitted background to n4_bkg.h5                                          time_series.py:972
         INFO      Saved background to n4_bkg.h5                                         time_series_builder.py:430
         INFO      Successfully restored fit from n4_bkg.h5                              time_series_builder.py:166
         INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:274
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:478
         INFO      - observation: poisson                                                       SpectrumLike.py:479
         INFO      - background: gaussian                                                       SpectrumLike.py:480
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
22:48:24 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:356
22:48:29 INFO      None 1-order polynomial fit with the mle method                               time_series.py:426
         INFO      Saved fitted background to b0_bkg.h5                                          time_series.py:972
         INFO      Saved background to b0_bkg.h5                                         time_series_builder.py:430
22:48:30 INFO      Successfully restored fit from b0_bkg.h5                              time_series_builder.py:166
         INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:274
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:478
         INFO      - observation: poisson                                                       SpectrumLike.py:479
         INFO      - background: gaussian                                                       SpectrumLike.py:480
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
../_images/notebooks_grb080916C_12_42.png
../_images/notebooks_grb080916C_12_43.png
../_images/notebooks_grb080916C_12_44.png

Setting up the fit

Let’s see if we can reproduce the results from the catalog.

Set priors for the model

We will fit the spectrum using Bayesian analysis, so we must set priors on the model parameters.

[9]:
model.GRB080916009.spectrum.main.shape.alpha.prior = Truncated_gaussian(
    lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.beta.prior = Truncated_gaussian(
    lower_bound=-5, upper_bound=-1.6, mu=-2.25, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.break_energy.prior = Log_normal(mu=2, sigma=1)
model.GRB080916009.spectrum.main.shape.break_energy.bounds = (None, None)
model.GRB080916009.spectrum.main.shape.K.prior = Log_uniform_prior(
    lower_bound=1e-3, upper_bound=1e1
)
model.GRB080916009.spectrum.main.shape.break_scale.prior = Log_uniform_prior(
    lower_bound=1e-4, upper_bound=10
)

Clone the model and setup the Bayesian analysis class

Next, we clone the model we built from the catalog so that we can look at the results later and fit the cloned model. We pass this model and the DataList of the plugins to a BayesianAnalysis class and set the sampler to MultiNest.

[10]:
new_model = clone_model(model)

bayes = BayesianAnalysis(new_model, DataList(*fluence_plugins))

# share spectrum gives a linear speed up when
# spectrumlike plugins have the same RSP input energies
bayes.set_sampler("multinest", share_spectrum=True)
         INFO      sampler set to multinest                                                bayesian_analysis.py:186

Examine at the catalog fitted model

We can quickly examine how well the catalog fit matches the data. There appears to be a discrepancy between the data and the model! Let’s refit to see if we can fix it.

[11]:
fig = display_spectrum_model_counts(bayes, min_rate=20, step=False)
../_images/notebooks_grb080916C_18_0.png

Run the sampler

We let MultiNest condition the model on the data

[12]:
bayes.sampler.setup(n_live_points=400)
bayes.sample()
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  400
 dimensionality =    5
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -3101.4755196673855      +/-  0.22702004178139762
 Total Likelihood Evaluations:        23457
 Sampling finished. Exiting MultiNest
22:48:42 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
GRB080916009...K (1.462 -0.011 +0.025) x 10^-2 1 / (keV s cm2)
GRB080916009...alpha -1.101 +0.008 +0.05
GRB080916009...break_energy (1.89 +0.15 +0.7) x 10^2 keV
GRB080916009...break_scale (0.0 +1.8 +3.5) x 10^-1
GRB080916009...beta -1.95 -0.25 -0.07
Values of -log(posterior) at the minimum:

-log(posterior)
n3 -1020.987852
n4 -1012.464341
b0 -1052.742703
total -3086.194896
Values of statistical measures:

statistical measures
AIC 6182.560246
BIC 6201.792456
DIC 6179.828718
PDIC 4.343363
log(Z) -1346.953704

Now our model seems to match much better with the data!

[13]:
bayes.restore_median_fit()
fig = display_spectrum_model_counts(bayes, min_rate=20)
         INFO      fit restored to median of posterior                                          sampler_base.py:156
../_images/notebooks_grb080916C_22_1.png

But how different are we from the catalog model? Let’s plot our fit along with the catalog model. Luckily, 3ML can handle all the units for is

[14]:
conversion = u.Unit("keV2/(cm2 s keV)").to("erg2/(cm2 s keV)")
energy_grid = np.logspace(1, 4, 100) * u.keV
vFv = (energy_grid**2 * model.get_point_source_fluxes(0, energy_grid)).to(
    "erg2/(cm2 s keV)"
)
[15]:
fig = plot_spectra(bayes.results, flux_unit="erg2/(cm2 s keV)")
ax = fig.get_axes()[0]
_ = ax.loglog(energy_grid, vFv, color="blue", label="catalog model")
../_images/notebooks_grb080916C_25_2.png

Time Resolved Analysis

Now that we have examined fluence fit, we can move to performing a time-resolved analysis.

Selecting a temporal binning

We first get the brightest NaI detector and create time bins via the Bayesian blocks algorithm. We can use the fitted background to make sure that our intervals are chosen in an unbiased way.

[16]:
n3 = time_series["n3"]
[17]:
n3.create_time_bins(0, 60, method="bayesblocks", use_background=True, p0=0.2)
22:49:36 INFO      Created 15 bins via bayesblocks                                       time_series_builder.py:632

Sometimes, glitches in the GBM data cause spikes in the data that the Bayesian blocks algorithm detects as fast changes in the count rate. We will have to remove those intervals manually.

Note: In the future, 3ML will provide an automated method to remove these unwanted spikes.

[18]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_30_0.png
[19]:
bad_bins = []
for i, w in enumerate(n3.bins.widths):
    if w < 5e-2:
        bad_bins.append(i)


edges = [n3.bins.starts[0]]

for i, b in enumerate(n3.bins):
    if i not in bad_bins:
        edges.append(b.stop)

starts = edges[:-1]
stops = edges[1:]


n3.create_time_bins(starts, stops, method="custom")
22:49:37 INFO      Created 12 bins via custom                                            time_series_builder.py:632

Now our light curve looks much more acceptable.

[20]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_33_0.png

The time series objects can read time bins from each other, so we will map these time bins onto the other detectors’ time series and create a list of time plugins for each detector and each time bin created above.

[21]:
time_resolved_plugins = {}

for k, v in time_series.items():
    v.read_bins(n3)
    time_resolved_plugins[k] = v.to_spectrumlike(from_bins=True)
         INFO      Created 12 bins via custom                                            time_series_builder.py:632
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:274
         INFO      Created 12 bins via custom                                            time_series_builder.py:632
         INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:274
         INFO      Created 12 bins via custom                                            time_series_builder.py:632
22:49:38 INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:274

Setting up the model

For the time-resolved analysis, we will fit the classic Band function to the data. We will set some principled priors.

[22]:
band = Band()
band.alpha.prior = Truncated_gaussian(lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5)
band.beta.prior = Truncated_gaussian(lower_bound=-5, upper_bound=-1.6, mu=-2, sigma=0.5)
band.xp.prior = Log_normal(mu=2, sigma=1)
band.xp.bounds = (None, None)
band.K.prior = Log_uniform_prior(lower_bound=1e-10, upper_bound=1e3)
ps = PointSource("grb", 0, 0, spectral_shape=band)
band_model = Model(ps)

Perform the fits

One way to perform Bayesian spectral fits to all the intervals is to loop through each one. There can are many ways to do this, so find an analysis pattern that works for you.

[23]:
models = []
results = []
analysis = []
for interval in range(12):
    # clone the model above so that we have a separate model
    # for each fit

    this_model = clone_model(band_model)

    # for each detector set up the plugin
    # for this time interval

    this_data_list = []
    for k, v in time_resolved_plugins.items():
        pi = v[interval]

        if k.startswith("b"):
            pi.set_active_measurements("250-30000")
        else:
            pi.set_active_measurements("9-900")

        pi.rebin_on_background(1.0)

        this_data_list.append(pi)

    # create a data list

    dlist = DataList(*this_data_list)

    # set up the sampler and fit

    bayes = BayesianAnalysis(this_model, dlist)

    # get some speed with share spectrum
    bayes.set_sampler("multinest", share_spectrum=True)
    bayes.sampler.setup(n_live_points=500)
    bayes.sample()

    # at this stage we coudl also
    # save the analysis result to
    # disk but we will simply hold
    # onto them in memory

    analysis.append(bayes)
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 107 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -788.36300826393222      +/-  0.17699383875647337
 Total Likelihood Evaluations:        16532
 Sampling finished. Exiting MultiNest
22:49:48 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (3.69 -0.8 +0.28) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-5.3 -1.8 +0.8) x 10^-1
grb.spectrum.main.Band.xp (3.02 -0.19 +1.1) x 10^2 keV
grb.spectrum.main.Band.beta -2.016 -0.5 +0.005
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval0 -250.060252
n4_interval0 -267.921447
b0_interval0 -285.636981
total -803.618680
Values of statistical measures:

statistical measures
AIC 1615.350674
BIC 1630.759492
DIC 1570.896096
PDIC 2.599993
log(Z) -342.381704
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1944.5753126410100      +/-  0.21705476781817501
 Total Likelihood Evaluations:        22589
 Sampling finished. Exiting MultiNest
22:50:01 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (4.15 -0.08 +0.17) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.53 -0.19 +0.32) x 10^-1
grb.spectrum.main.Band.xp (6.07 -0.6 +0.26) x 10^2 keV
grb.spectrum.main.Band.beta -2.114 +0.017 +0.09
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval1 -641.794182
n4_interval1 -645.112542
b0_interval1 -674.012219
total -1960.918943
Values of statistical measures:

statistical measures
AIC 3929.951201
BIC 3945.360019
DIC 3872.598206
PDIC 2.887261
log(Z) -844.518328
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 115 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -911.99753936832485      +/-  0.21107807522777722
 Total Likelihood Evaluations:        20131
 Sampling finished. Exiting MultiNest
22:50:14 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.65 -0.31 +0.11) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha -1.045 -0.11 -0.010
grb.spectrum.main.Band.xp (4.5 -0.6 +2.2) x 10^2 keV
grb.spectrum.main.Band.beta -1.683 -0.007 +0.009
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval2 -289.013090
n4_interval2 -310.665957
b0_interval2 -324.897787
total -924.576834
Values of statistical measures:

statistical measures
AIC 1857.266983
BIC 1872.675801
DIC 1806.619971
PDIC 1.649273
log(Z) -396.075499
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 109 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -788.43336626575285      +/-  0.17812345379933611
 Total Likelihood Evaluations:        16514
 Sampling finished. Exiting MultiNest
22:50:24 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.97 -0.4 +0.32) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.0 -1.0 +0.6) x 10^-1
grb.spectrum.main.Band.xp (3.3 -0.5 +0.8) x 10^2 keV
grb.spectrum.main.Band.beta -2.21 -0.5 +0.13
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval3 -242.383067
n4_interval3 -262.628592
b0_interval3 -298.279528
total -803.291188
Values of statistical measures:

statistical measures
AIC 1614.695690
BIC 1630.104508
DIC 1570.710769
PDIC 3.069918
log(Z) -342.412260
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -2270.6428741442878      +/-  0.19824453881213691
 Total Likelihood Evaluations:        21413
 Sampling finished. Exiting MultiNest
22:50:36 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.05 -0.13 +0.08) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.80 -0.5 +0.23) x 10^-1
grb.spectrum.main.Band.xp (4.02 -0.32 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -1.96 -0.15 +0.05
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval4 -757.078596
n4_interval4 -746.778027
b0_interval4 -778.579429
total -2282.436051
Values of statistical measures:

statistical measures
AIC 4572.985417
BIC 4588.394235
DIC 4527.867790
PDIC 3.384306
log(Z) -986.127671
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1573.1461548134068      +/-  0.19210324364650699
 Total Likelihood Evaluations:        19024
 Sampling finished. Exiting MultiNest
22:50:46 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.81 -0.23 +0.17) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.1 -0.6 +0.4) x 10^-1
grb.spectrum.main.Band.xp (4.13 -0.34 +0.9) x 10^2 keV
grb.spectrum.main.Band.beta -2.12 -0.31 +0.07
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval5 -523.494659
n4_interval5 -527.764712
b0_interval5 -536.588102
total -1587.847473
Values of statistical measures:

statistical measures
AIC 3183.808261
BIC 3199.217078
DIC 3136.630773
PDIC 3.217498
log(Z) -683.208694
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1759.6709143916489      +/-  0.19685366174403185
 Total Likelihood Evaluations:        20312
 Sampling finished. Exiting MultiNest
22:50:59 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.157 +0.006 +0.21) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.599 +0.021 +0.8) x 10^-1
grb.spectrum.main.Band.xp (3.507 -0.5 -0.004) x 10^2 keV
grb.spectrum.main.Band.beta -2.078 +0.012 +0.15
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval6 -584.483577
n4_interval6 -575.808945
b0_interval6 -608.922385
total -1769.214907
Values of statistical measures:

statistical measures
AIC 3546.543129
BIC 3561.951946
DIC 3503.248847
PDIC 2.404418
log(Z) -764.215368
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1941.0365534308930      +/-  0.19738885536058515
 Total Likelihood Evaluations:        19798
 Sampling finished. Exiting MultiNest
22:51:10 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.68 -0.05 +0.12) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha -1.040 -0.028 +0.05
grb.spectrum.main.Band.xp (4.23 -0.7 +0.26) x 10^2 keV
grb.spectrum.main.Band.beta -2.198 +0.010 +0.18
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval7 -640.843436
n4_interval7 -650.176876
b0_interval7 -662.271266
total -1953.291578
Values of statistical measures:

statistical measures
AIC 3914.696471
BIC 3930.105289
DIC 3867.656402
PDIC 2.654827
log(Z) -842.981464
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -2060.2638067644716      +/-  0.19873759987415240
 Total Likelihood Evaluations:        19599
 Sampling finished. Exiting MultiNest
22:51:22 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.854 +0.014 +0.20) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-7.19 +0.24 +1.0) x 10^-1
grb.spectrum.main.Band.xp (2.84 -0.23 +0.10) x 10^2 keV
grb.spectrum.main.Band.beta -2.20 -0.12 +0.05
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval8 -700.413696
n4_interval8 -665.535769
b0_interval8 -700.852735
total -2066.802201
Values of statistical measures:

statistical measures
AIC 4141.717716
BIC 4157.126533
DIC 4101.851071
PDIC 1.666125
log(Z) -894.761203
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1878.7011456996950      +/-  0.14567567247502361
 Total Likelihood Evaluations:        12874
 Sampling finished. Exiting MultiNest
22:51:29 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.2 -0.5 +0.9) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.3 -2.3 +2.6) x 10^-1
grb.spectrum.main.Band.xp (1.04 -0.31 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -1.83 -0.4 +0.10
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval9 -616.818596
n4_interval9 -616.086739
b0_interval9 -648.418236
total -1881.323571
Values of statistical measures:

statistical measures
AIC 3770.760457
BIC 3786.169274
DIC 3689.489322
PDIC -57.448784
log(Z) -815.909541
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1322.0069933557370      +/-  0.16693118255376216
 Total Likelihood Evaluations:        15982
 Sampling finished. Exiting MultiNest
22:51:38 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.0 +/- 0.4) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-7.5 -1.3 +1.1) x 10^-1
grb.spectrum.main.Band.xp (2.15 -0.33 +0.8) x 10^2 keV
grb.spectrum.main.Band.beta -1.91 -0.6 +0.04
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval10 -437.633633
n4_interval10 -433.046507
b0_interval10 -460.896166
total -1331.576306
Values of statistical measures:

statistical measures
AIC 2671.265926
BIC 2686.674743
DIC 2634.752585
PDIC 0.786867
log(Z) -574.140342
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -812.24481981137194      +/-  0.14828756127095422
 Total Likelihood Evaluations:        12148
 Sampling finished. Exiting MultiNest
22:51:45 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.6 -0.8 +2.3) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-5.3 -2.2 +4) x 10^-1
grb.spectrum.main.Band.xp (1.31 -0.31 +0.30) x 10^2 keV
grb.spectrum.main.Band.beta -2.14 -0.5 +0.23
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval11 -272.420524
n4_interval11 -255.759407
b0_interval11 -292.309826
total -820.489757
Values of statistical measures:

statistical measures
AIC 1649.092829
BIC 1664.501646
DIC 1616.064064
PDIC -1.463266
log(Z) -352.753443

Examine the fits

Now we can look at the fits in count space to make sure they are ok.

[24]:
for a in analysis:
    a.restore_median_fit()
    _ = display_spectrum_model_counts(a, min_rate=[20, 20, 20], step=False)
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
22:51:46 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
22:51:47 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
22:51:48 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
22:51:49 INFO      fit restored to median of posterior                                          sampler_base.py:156
../_images/notebooks_grb080916C_41_12.png
../_images/notebooks_grb080916C_41_13.png
../_images/notebooks_grb080916C_41_14.png
../_images/notebooks_grb080916C_41_15.png
../_images/notebooks_grb080916C_41_16.png
../_images/notebooks_grb080916C_41_17.png
../_images/notebooks_grb080916C_41_18.png
../_images/notebooks_grb080916C_41_19.png
../_images/notebooks_grb080916C_41_20.png
../_images/notebooks_grb080916C_41_21.png
../_images/notebooks_grb080916C_41_22.png
../_images/notebooks_grb080916C_41_23.png

Finally, we can plot the models together to see how the spectra evolve with time.

[25]:
fig = plot_spectra(
    *[a.results for a in analysis[::1]],
    flux_unit="erg2/(cm2 s keV)",
    fit_cmap="viridis",
    contour_cmap="viridis",
    contour_style_kwargs=dict(alpha=0.1),
)
../_images/notebooks_grb080916C_43_13.png

This example can serve as a template for performing analysis on GBM data. However, as 3ML provides an abstract interface and modular building blocks, similar analysis pipelines can be built for any time series data.