Analyzing GRB 080916C

Alt text (NASA/Swift/Cruz deWilde)

To demonstrate the capabilities and features of 3ML in, we will go through a time-integrated and time-resolved analysis. This example serves as a standard way to analyze Fermi-GBM data with 3ML as well as a template for how you can design your instrument’s analysis pipeline with 3ML if you have similar data.

3ML provides utilities to reduce time series data to plugins in a correct and statistically justified way (e.g., background fitting of Poisson data is done with a Poisson likelihood). The approach is generic and can be extended. For more details, see the time series documentation.

[1]:
import warnings

warnings.simplefilter("ignore")
[2]:
%%capture
import matplotlib.pyplot as plt
import numpy as np

np.seterr(all="ignore")


from threeML import *
from threeML.io.package_data import get_path_of_data_file
[3]:

silence_warnings() %matplotlib inline from jupyterthemes import jtplot jtplot.style(context="talk", fscale=1, ticks=True, grid=False) set_threeML_style()

Examining the catalog

As with Swift and Fermi-LAT, 3ML provides a simple interface to the on-line Fermi-GBM catalog. Let’s get the information for GRB 080916C.

[4]:
gbm_catalog = FermiGBMBurstCatalog()
gbm_catalog.query_sources("GRB080916009")
23:53:21 INFO      The cache for fermigbrst does not yet exist. We will try to    get_heasarc_table_as_pandas.py:63
                  build it                                                                                         
                                                                                                                   
         INFO      Building cache for fermigbrst                                 get_heasarc_table_as_pandas.py:103
[4]:
Table length=1
name ra dec trigger_time t90
object float64 float64 float64 float64
GRB080916009 119.800 -56.600 54725.0088613 62.977

To aid in quickly replicating the catalog analysis, and thanks to the tireless efforts of the Fermi-GBM team, we have added the ability to extract the analysis parameters from the catalog as well as build an astromodels model with the best fit parameters baked in. Using this information, one can quickly run through the catalog an replicate the entire analysis with a script. Let’s give it a try.

[5]:
grb_info = gbm_catalog.get_detector_information()["GRB080916009"]

gbm_detectors = grb_info["detectors"]
source_interval = grb_info["source"]["fluence"]
background_interval = grb_info["background"]["full"]
best_fit_model = grb_info["best fit model"]["fluence"]
model = gbm_catalog.get_model(best_fit_model, "fluence")["GRB080916009"]
[6]:
model
[6]:
Model summary:

N
Point sources 1
Extended sources 0
Particle sources 0


Free parameters (5):

value min_value max_value unit
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.K 0.012255 0.0 None keV-1 s-1 cm-2
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.alpha -1.130424 -1.5 2.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_energy 309.2031 10.0 None keV
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.break_scale 0.3 0.0 10.0
GRB080916009.spectrum.main.SmoothlyBrokenPowerLaw.beta -2.096931 -5.0 -1.6


Fixed parameters (3):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)

Downloading the data

We provide a simple interface to download the Fermi-GBM data. Using the information from the catalog that we have extracted, we can download just the data from the detectors that were used for the catalog analysis. This will download the CSPEC, TTE and instrument response files from the on-line database.

[7]:
dload = download_GBM_trigger_data("bn080916009", detectors=gbm_detectors)

Let’s first examine the catalog fluence fit. Using the TimeSeriesBuilder, we can fit the background, set the source interval, and create a 3ML plugin for the analysis. We will loop through the detectors, set their appropriate channel selections, and ensure there are enough counts in each bin to make the PGStat profile likelihood valid.

  • First we use the CSPEC data to fit the background using the background selections. We use CSPEC because it has a longer duration for fitting the background.

  • The background is saved to an HDF5 file that stores the polynomial coefficients and selections which we can read in to the TTE file later.

  • The light curve is plotted.

  • The source selection from the catalog is set and DispersionSpectrumLike plugin is created.

  • The plugin has the standard GBM channel selections for spectral analysis set.

[8]:
fluence_plugins = []
time_series = {}
for det in gbm_detectors:
    ts_cspec = TimeSeriesBuilder.from_gbm_cspec_or_ctime(
        det, cspec_or_ctime_file=dload[det]["cspec"], rsp_file=dload[det]["rsp"]
    )

    ts_cspec.set_background_interval(*background_interval.split(","))
    ts_cspec.save_background(f"{det}_bkg.h5", overwrite=True)

    ts_tte = TimeSeriesBuilder.from_gbm_tte(
        det,
        tte_file=dload[det]["tte"],
        rsp_file=dload[det]["rsp"],
        restore_background=f"{det}_bkg.h5",
    )

    time_series[det] = ts_tte

    ts_tte.set_active_time_interval(source_interval)

    ts_tte.view_lightcurve(-40, 100)

    fluence_plugin = ts_tte.to_spectrumlike()

    if det.startswith("b"):
        fluence_plugin.set_active_measurements("250-30000")

    else:
        fluence_plugin.set_active_measurements("9-900")

    fluence_plugin.rebin_on_background(1.0)

    fluence_plugins.append(fluence_plugin)
23:54:01 INFO      Auto-determined polynomial order: 0                                binned_spectrum_series.py:356
23:54:06 INFO      None 0-order polynomial fit with the mle method                               time_series.py:426
         INFO      Saved fitted background to n3_bkg.h5                                          time_series.py:972
         INFO      Saved background to n3_bkg.h5                                         time_series_builder.py:430
23:54:07 INFO      Successfully restored fit from n3_bkg.h5                              time_series_builder.py:166
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:274
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:478
         INFO      - observation: poisson                                                       SpectrumLike.py:479
         INFO      - background: gaussian                                                       SpectrumLike.py:480
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
23:54:11 INFO      Now using 120 bins                                                          SpectrumLike.py:1698
23:54:12 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:356
23:54:18 INFO      None 1-order polynomial fit with the mle method                               time_series.py:426
         INFO      Saved fitted background to n4_bkg.h5                                          time_series.py:972
         INFO      Saved background to n4_bkg.h5                                         time_series_builder.py:430
         INFO      Successfully restored fit from n4_bkg.h5                              time_series_builder.py:166
         INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:274
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:478
         INFO      - observation: poisson                                                       SpectrumLike.py:479
         INFO      - background: gaussian                                                       SpectrumLike.py:480
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
23:54:19 INFO      Auto-determined polynomial order: 1                                binned_spectrum_series.py:356
23:54:25 INFO      None 1-order polynomial fit with the mle method                               time_series.py:426
         INFO      Saved fitted background to b0_bkg.h5                                          time_series.py:972
         INFO      Saved background to b0_bkg.h5                                         time_series_builder.py:430
         INFO      Successfully restored fit from b0_bkg.h5                              time_series_builder.py:166
         INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:274
         INFO      Auto-probed noise models:                                                    SpectrumLike.py:478
         INFO      - observation: poisson                                                       SpectrumLike.py:479
         INFO      - background: gaussian                                                       SpectrumLike.py:480
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
../_images/notebooks_grb080916C_12_42.png
../_images/notebooks_grb080916C_12_43.png
../_images/notebooks_grb080916C_12_44.png

Setting up the fit

Let’s see if we can reproduce the results from the catalog.

Set priors for the model

We will fit the spectrum using Bayesian analysis, so we must set priors on the model parameters.

[9]:
model.GRB080916009.spectrum.main.shape.alpha.prior = Truncated_gaussian(
    lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.beta.prior = Truncated_gaussian(
    lower_bound=-5, upper_bound=-1.6, mu=-2.25, sigma=0.5
)
model.GRB080916009.spectrum.main.shape.break_energy.prior = Log_normal(mu=2, sigma=1)
model.GRB080916009.spectrum.main.shape.break_energy.bounds = (None, None)
model.GRB080916009.spectrum.main.shape.K.prior = Log_uniform_prior(
    lower_bound=1e-3, upper_bound=1e1
)
model.GRB080916009.spectrum.main.shape.break_scale.prior = Log_uniform_prior(
    lower_bound=1e-4, upper_bound=10
)

Clone the model and setup the Bayesian analysis class

Next, we clone the model we built from the catalog so that we can look at the results later and fit the cloned model. We pass this model and the DataList of the plugins to a BayesianAnalysis class and set the sampler to MultiNest.

[10]:
new_model = clone_model(model)

bayes = BayesianAnalysis(new_model, DataList(*fluence_plugins))

# share spectrum gives a linear speed up when
# spectrumlike plugins have the same RSP input energies
bayes.set_sampler("multinest", share_spectrum=True)
23:54:26 INFO      sampler set to multinest                                                bayesian_analysis.py:186

Examine at the catalog fitted model

We can quickly examine how well the catalog fit matches the data. There appears to be a discrepancy between the data and the model! Let’s refit to see if we can fix it.

[11]:
fig = display_spectrum_model_counts(bayes, min_rate=20, step=False)
../_images/notebooks_grb080916C_18_0.png

Run the sampler

We let MultiNest condition the model on the data

[12]:
bayes.sampler.setup(n_live_points=400)
bayes.sample()
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  400
 dimensionality =    5
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -3101.3601195521983      +/-  0.22533566593288590
 Total Likelihood Evaluations:        22630
 Sampling finished. Exiting MultiNest

23:54:38 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
GRB080916009...K (1.461 -0.012 +0.026) x 10^-2 1 / (keV s cm2)
GRB080916009...alpha -1.0965 +0.0028 +0.04
GRB080916009...break_energy (1.90 +0.12 +0.7) x 10^2 keV
GRB080916009...break_scale (0.0 +1.7 +3.3) x 10^-1
GRB080916009...beta -1.995 -0.19 -0.014
Values of -log(posterior) at the minimum:

-log(posterior)
n3 -1020.334148
n4 -1010.991479
b0 -1049.346951
total -3080.672579
Values of statistical measures:

statistical measures
AIC 6171.515613
BIC 6190.747824
DIC 6179.869957
PDIC 4.400208
log(Z) -1346.903586

Now our model seems to match much better with the data!

[13]:
bayes.restore_median_fit()
fig = display_spectrum_model_counts(bayes, min_rate=20)
         INFO      fit restored to median of posterior                                          sampler_base.py:156
../_images/notebooks_grb080916C_22_1.png

But how different are we from the catalog model? Let’s plot our fit along with the catalog model. Luckily, 3ML can handle all the units for is

[14]:
conversion = u.Unit("keV2/(cm2 s keV)").to("erg2/(cm2 s keV)")
energy_grid = np.logspace(1, 4, 100) * u.keV
vFv = (energy_grid**2 * model.get_point_source_fluxes(0, energy_grid)).to(
    "erg2/(cm2 s keV)"
)
[15]:
fig = plot_spectra(bayes.results, flux_unit="erg2/(cm2 s keV)")
ax = fig.get_axes()[0]
_ = ax.loglog(energy_grid, vFv, color="blue", label="catalog model")
../_images/notebooks_grb080916C_25_2.png

Time Resolved Analysis

Now that we have examined fluence fit, we can move to performing a time-resolved analysis.

Selecting a temporal binning

We first get the brightest NaI detector and create time bins via the Bayesian blocks algorithm. We can use the fitted background to make sure that our intervals are chosen in an unbiased way.

[16]:
n3 = time_series["n3"]
[17]:
n3.create_time_bins(0, 60, method="bayesblocks", use_background=True, p0=0.2)
23:55:37 INFO      Created 15 bins via bayesblocks                                       time_series_builder.py:632

Sometimes, glitches in the GBM data cause spikes in the data that the Bayesian blocks algorithm detects as fast changes in the count rate. We will have to remove those intervals manually.

Note: In the future, 3ML will provide an automated method to remove these unwanted spikes.

[18]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_30_0.png
[19]:
bad_bins = []
for i, w in enumerate(n3.bins.widths):
    if w < 5e-2:
        bad_bins.append(i)


edges = [n3.bins.starts[0]]

for i, b in enumerate(n3.bins):
    if i not in bad_bins:
        edges.append(b.stop)

starts = edges[:-1]
stops = edges[1:]


n3.create_time_bins(starts, stops, method="custom")
         INFO      Created 12 bins via custom                                            time_series_builder.py:632

Now our light curve looks much more acceptable.

[20]:
fig = n3.view_lightcurve(use_binner=True)
../_images/notebooks_grb080916C_33_0.png

The time series objects can read time bins from each other, so we will map these time bins onto the other detectors’ time series and create a list of time plugins for each detector and each time bin created above.

[21]:
time_resolved_plugins = {}

for k, v in time_series.items():
    v.read_bins(n3)
    time_resolved_plugins[k] = v.to_spectrumlike(from_bins=True)
         INFO      Created 12 bins via custom                                            time_series_builder.py:632
         INFO      Interval set to 1.28-64.257 for n3                                    time_series_builder.py:274
         INFO      Created 12 bins via custom                                            time_series_builder.py:632
23:55:38 INFO      Interval set to 1.28-64.257 for n4                                    time_series_builder.py:274
         INFO      Created 12 bins via custom                                            time_series_builder.py:632
         INFO      Interval set to 1.28-64.257 for b0                                    time_series_builder.py:274

Setting up the model

For the time-resolved analysis, we will fit the classic Band function to the data. We will set some principled priors.

[22]:
band = Band()
band.alpha.prior = Truncated_gaussian(lower_bound=-1.5, upper_bound=1, mu=-1, sigma=0.5)
band.beta.prior = Truncated_gaussian(lower_bound=-5, upper_bound=-1.6, mu=-2, sigma=0.5)
band.xp.prior = Log_normal(mu=2, sigma=1)
band.xp.bounds = (None, None)
band.K.prior = Log_uniform_prior(lower_bound=1e-10, upper_bound=1e3)
ps = PointSource("grb", 0, 0, spectral_shape=band)
band_model = Model(ps)

Perform the fits

One way to perform Bayesian spectral fits to all the intervals is to loop through each one. There can are many ways to do this, so find an analysis pattern that works for you.

[23]:
models = []
results = []
analysis = []
for interval in range(12):
    # clone the model above so that we have a separate model
    # for each fit

    this_model = clone_model(band_model)

    # for each detector set up the plugin
    # for this time interval

    this_data_list = []
    for k, v in time_resolved_plugins.items():
        pi = v[interval]

        if k.startswith("b"):
            pi.set_active_measurements("250-30000")
        else:
            pi.set_active_measurements("9-900")

        pi.rebin_on_background(1.0)

        this_data_list.append(pi)

    # create a data list

    dlist = DataList(*this_data_list)

    # set up the sampler and fit

    bayes = BayesianAnalysis(this_model, dlist)

    # get some speed with share spectrum
    bayes.set_sampler("multinest", share_spectrum=True)
    bayes.sampler.setup(n_live_points=500)
    bayes.sample()

    # at this stage we coudl also
    # save the analysis result to
    # disk but we will simply hold
    # onto them in memory

    analysis.append(bayes)
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 107 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -789.16178721973313      +/-  0.18004354087331292
 Total Likelihood Evaluations:        18240
 Sampling finished. Exiting MultiNest
23:55:49 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (3.7 +/- 0.5) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-5.4 -1.4 +0.9) x 10^-1
grb.spectrum.main.Band.xp (3.0 -0.5 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -2.02 -0.13 +0.17
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval0 -250.062141
n4_interval0 -267.924028
b0_interval0 -285.642588
total -803.628756
Values of statistical measures:

statistical measures
AIC 1615.370827
BIC 1630.779644
DIC 1570.103993
PDIC 2.462682
log(Z) -342.728610
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1943.7796598478747      +/-  0.21532613989150862
 Total Likelihood Evaluations:        25341
 Sampling finished. Exiting MultiNest

23:56:02 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (4.11 -0.04 +0.18) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.61 -0.14 +0.35) x 10^-1
grb.spectrum.main.Band.xp (6.26 -0.6 +0.21) x 10^2 keV
grb.spectrum.main.Band.beta -2.13 +/- 0.07
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval1 -641.914175
n4_interval1 -645.503010
b0_interval1 -673.790438
total -1961.207623
Values of statistical measures:

statistical measures
AIC 3930.528559
BIC 3945.937377
DIC 3872.206745
PDIC 3.068211
log(Z) -844.172780
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 115 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -913.03704286696268      +/-  0.19338280352501239
 Total Likelihood Evaluations:        19198
 Sampling finished. Exiting MultiNest
23:56:14 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.75 +0.07 +1.2) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha -1.062 -0.004 +0.25
grb.spectrum.main.Band.xp (4.9 -2.5 -0.4) x 10^2 keV
grb.spectrum.main.Band.beta -1.93 -0.25 +0.21
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval2 -290.131662
n4_interval2 -311.684454
b0_interval2 -324.276244
total -926.092361
Values of statistical measures:

statistical measures
AIC 1860.298036
BIC 1875.706854
DIC 1809.276765
PDIC -0.767752
log(Z) -396.526949
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 109 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -792.29825563698193      +/-  0.18187980153294017
 Total Likelihood Evaluations:        19290
 Sampling finished. Exiting MultiNest
23:56:26 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (3.43 -0.6 +0.19) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.31 -1.3 +0.09) x 10^-1
grb.spectrum.main.Band.xp (2.6 -0.4 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -1.95 +0.08 +0.21
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval3 -241.876128
n4_interval3 -262.211085
b0_interval3 -298.189064
total -802.276276
Values of statistical measures:

statistical measures
AIC 1612.665867
BIC 1628.074685
DIC 1573.532857
PDIC 2.828010
log(Z) -344.090760
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -2270.7489678530824      +/-  0.19811779733141219
 Total Likelihood Evaluations:        21807
 Sampling finished. Exiting MultiNest
23:56:38 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.08 +/- 0.10) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-9.75 +/- 0.35) x 10^-1
grb.spectrum.main.Band.xp (3.87 -0.33 +0.5) x 10^2 keV
grb.spectrum.main.Band.beta -1.95 -0.12 +0.06
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval4 -757.172173
n4_interval4 -746.525568
b0_interval4 -778.393450
total -2282.091191
Values of statistical measures:

statistical measures
AIC 4572.295696
BIC 4587.704514
DIC 4527.578411
PDIC 3.388573
log(Z) -986.173747
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1574.3399885064989      +/-  0.19460075903995108
 Total Likelihood Evaluations:        20821
 Sampling finished. Exiting MultiNest

23:56:50 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.981 -0.27 +0.028) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.56 -0.4 +0.18) x 10^-1
grb.spectrum.main.Band.xp (3.78 -0.09 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -2.0928 -0.4 -0.0027
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval5 -524.745755
n4_interval5 -526.746326
b0_interval5 -536.047769
total -1587.539849
Values of statistical measures:

statistical measures
AIC 3183.193013
BIC 3198.601831
DIC 3137.146413
PDIC 3.011943
log(Z) -683.727170
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1769.4247610724713      +/-  0.20076185402812957
 Total Likelihood Evaluations:        20124
 Sampling finished. Exiting MultiNest

23:57:03 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (2.535 +0.023 +0.33) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.472 -0.026 +0.8) x 10^-1
grb.spectrum.main.Band.xp (2.57 -0.30 -0.04) x 10^2 keV
grb.spectrum.main.Band.beta -1.7999 -0.0026 +0.04
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval6 -586.266952
n4_interval6 -575.482243
b0_interval6 -612.057922
total -1773.807117
Values of statistical measures:

statistical measures
AIC 3555.727549
BIC 3571.136366
DIC 3518.614413
PDIC 1.912900
log(Z) -768.451410
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -1939.9910652683066      +/-  0.19480024678870403
 Total Likelihood Evaluations:        19164
 Sampling finished. Exiting MultiNest
23:57:15 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.69 -0.08 +0.10) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha -1.034 -0.034 +0.04
grb.spectrum.main.Band.xp (4.2 -0.4 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -2.23 -0.4 +0.04
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval7 -640.889444
n4_interval7 -650.222117
b0_interval7 -662.118133
total -1953.229694
Values of statistical measures:

statistical measures
AIC 3914.572703
BIC 3929.981520
DIC 3867.908410
PDIC 2.808834
log(Z) -842.527415
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -2053.8975531352962      +/-  0.18711663477587462
 Total Likelihood Evaluations:        20611
 Sampling finished. Exiting MultiNest

23:57:26 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.53 +/- 0.12) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.5 +/- 0.6) x 10^-1
grb.spectrum.main.Band.xp (3.8 -0.5 +0.6) x 10^2 keV
grb.spectrum.main.Band.beta -2.34 -0.4 +0.19
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval8 -698.553332
n4_interval8 -666.084501
b0_interval8 -702.461894
total -2067.099727
Values of statistical measures:

statistical measures
AIC 4142.312769
BIC 4157.721586
DIC 4098.252722
PDIC 3.378624
log(Z) -891.996374
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1878.5582155182235      +/-  0.14450276988972305
 Total Likelihood Evaluations:        12710
 Sampling finished. Exiting MultiNest

23:57:33 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.09 -0.29 +1.4) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-8.7 -1.6 +4) x 10^-1
grb.spectrum.main.Band.xp (1.1 +/- 0.4) x 10^2 keV
grb.spectrum.main.Band.beta -1.85 -0.4 +0.11
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval9 -616.892813
n4_interval9 -616.239216
b0_interval9 -648.332134
total -1881.464162
Values of statistical measures:

statistical measures
AIC 3771.041638
BIC 3786.450456
DIC 3691.380960
PDIC -55.617916
log(Z) -815.847467
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt ln(ev)=  -1321.8841298986192      +/-  0.16524015506145701
 Total Likelihood Evaluations:        15307
 Sampling finished. Exiting MultiNest

23:57:42 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (1.97 -0.33 +0.7) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-7.7 -1.1 +1.9) x 10^-1
grb.spectrum.main.Band.xp (2.2 -0.5 +0.7) x 10^2 keV
grb.spectrum.main.Band.beta -1.93 -0.5 +0.07
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval10 -437.575250
n4_interval10 -433.265883
b0_interval10 -460.981201
total -1331.822334
Values of statistical measures:

statistical measures
AIC 2671.757983
BIC 2687.166801
DIC 2633.823218
PDIC -0.259914
log(Z) -574.086983
         INFO      Range 9-900 translates to channels 5-124                                    SpectrumLike.py:1229
         INFO      Now using 120 bins                                                          SpectrumLike.py:1698
         INFO      Range 9-900 translates to channels 5-123                                    SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      Range 250-30000 translates to channels 1-119                                SpectrumLike.py:1229
         INFO      Now using 119 bins                                                          SpectrumLike.py:1698
         INFO      sampler set to multinest                                                bayesian_analysis.py:186
 *****************************************************
 MultiNest v3.10
 Copyright Farhan Feroz & Mike Hobson
 Release Jul 2015

 no. of live points =  500
 dimensionality =    4
 *****************************************************
  analysing data from chains/fit-.txt
 ln(ev)=  -812.58043984836968      +/-  0.14867514044655994
 Total Likelihood Evaluations:        12361
 Sampling finished. Exiting MultiNest
23:57:49 INFO      fit restored to maximum of posterior                                         sampler_base.py:167
         INFO      fit restored to maximum of posterior                                         sampler_base.py:167
Maximum a posteriori probability (MAP) point:

result unit
parameter
grb.spectrum.main.Band.K (3.1 -0.9 +2.2) x 10^-2 1 / (keV s cm2)
grb.spectrum.main.Band.alpha (-4.3 -2.8 +2.1) x 10^-1
grb.spectrum.main.Band.xp (1.26 -0.34 +0.16) x 10^2 keV
grb.spectrum.main.Band.beta -2.13 -0.31 +0.32
Values of -log(posterior) at the minimum:

-log(posterior)
n3_interval11 -272.509198
n4_interval11 -255.906855
b0_interval11 -292.509698
total -820.925751
Values of statistical measures:

statistical measures
AIC 1649.964817
BIC 1665.373634
DIC 1616.177961
PDIC -1.033609
log(Z) -352.899201

Examine the fits

Now we can look at the fits in count space to make sure they are ok.

[24]:
for a in analysis:
    a.restore_median_fit()
    _ = display_spectrum_model_counts(a, min_rate=[20, 20, 20], step=False)
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
23:57:50 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
23:57:51 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
23:57:52 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
23:57:53 INFO      fit restored to median of posterior                                          sampler_base.py:156
         INFO      fit restored to median of posterior                                          sampler_base.py:156
../_images/notebooks_grb080916C_41_12.png
../_images/notebooks_grb080916C_41_13.png
../_images/notebooks_grb080916C_41_14.png
../_images/notebooks_grb080916C_41_15.png
../_images/notebooks_grb080916C_41_16.png
../_images/notebooks_grb080916C_41_17.png
../_images/notebooks_grb080916C_41_18.png
../_images/notebooks_grb080916C_41_19.png
../_images/notebooks_grb080916C_41_20.png
../_images/notebooks_grb080916C_41_21.png
../_images/notebooks_grb080916C_41_22.png
../_images/notebooks_grb080916C_41_23.png

Finally, we can plot the models together to see how the spectra evolve with time.

[25]:
fig = plot_spectra(
    *[a.results for a in analysis[::1]],
    flux_unit="erg2/(cm2 s keV)",
    fit_cmap="viridis",
    contour_cmap="viridis",
    contour_style_kwargs=dict(alpha=0.1),
)
../_images/notebooks_grb080916C_43_13.png

This example can serve as a template for performing analysis on GBM data. However, as 3ML provides an abstract interface and modular building blocks, similar analysis pipelines can be built for any time series data.