threeML.minimizer.tutorial_material module
- class threeML.minimizer.tutorial_material.Complex(**kwargs)[source]
Bases:
Simple
description :
A convex log likelihood with multiple minima
latex : n.a.
parameters :
- k :
desc : normalization initial value : 1.0 fix : yes
mu :
desc : parameter initial value : 5.0 min : 1.0 max : 100
- static info()
- class threeML.minimizer.tutorial_material.CustomLikelihoodLike(name)[source]
Bases:
PluginPrototype
- get_log_like()[source]
Return the value of the log-likelihood with the current values for the parameters
- get_number_of_data_points()[source]
This returns the number of data points that are used to evaluate the likelihood. For binned measurements, this is the number of active bins used in the fit. For unbinned measurements, this would be the number of photons/particles that are evaluated on the likelihood
- inner_fit()
Return the value of the log-likelihood with the current values for the parameters
- class threeML.minimizer.tutorial_material.JointLikelihoodWrap(likelihood_model: Model, data_list: DataList, verbose: bool = False, record: bool = True)[source]
Bases:
JointLikelihood
- fit(*args, **kwargs)[source]
Perform a fit of the current likelihood model on the datasets
- Parameters:
quiet – If True, print the results (default), otherwise do not print anything
:param compute_covariance:If True (default), compute and display the errors and the correlation matrix. :param n_samples: Number of samples to scan the likelihood. :return: a dictionary with the results on the parameters, and the values of the likelihood at the minimum
for each dataset and the total one.
- class threeML.minimizer.tutorial_material.Simple(**kwargs)[source]
Bases:
Function1D
description :
A convex log likelihood
latex : n.a.
parameters :
- k :
desc : normalization initial value : 1.0 fix : yes
mu :
desc : parameter initial value : 5.0 min : 1.0 max : 100
- static info()
- threeML.minimizer.tutorial_material.plot_minimizer_path(jl, points=False)[source]
- Parameters:
jl (JointLikelihood)
- Returns: