threeML.utils.photometry package
Submodules
threeML.utils.photometry.filter_library module
- class threeML.utils.photometry.filter_library.FilterLibrary[source]
Bases:
object
- property instruments
threeML.utils.photometry.filter_set module
- class threeML.utils.photometry.filter_set.FilterSet(filter, mask=None)[source]
Bases:
object
- ab_magnitudes()[source]
return the effective stimulus of the model and filter for the given magnitude system :return: np.ndarray of ab magnitudes
- property effective_wavelength
the average wave length of the filters
- Type:
return
- property filter_names
the filter names
- Type:
return
- property n_bands
the number of bands
- Type:
return
- property native_filter_names
the native filter names :return:
- set_model(differential_flux)[source]
set the model of that will be used during the convolution. Not that speclite considers a differential flux to be in units of erg/s/cm2/lambda so we must convert astromodels into the proper units (using astropy units!)
- property speclite_filters
exposes the speclite fitlers for simulations
- Returns:
- property wavelength_bounds
IntervalSet of FWHM bounds of the filters :return:
- property waveunits
the pysynphot wave units
- Type:
return
threeML.utils.photometry.photometric_observation module
- class threeML.utils.photometry.photometric_observation.PhotometericObservation(band_names: List[str], ab_magnitudes: Iterable[float], ab_magnitude_errors: Iterable[float])[source]
Bases:
object
- classmethod from_dict(data: dict) PhotometericObservation [source]
Create an observation from a dict in the form data = dict(a=(mag, mag_err), b=(mag, mag_err))
- classmethod from_hdf5(file_name: str) PhotometericObservation [source]
Load an observation from an hdf5 file
- classmethod from_kwargs(**kwargs: dict) PhotometericObservation [source]
Create an observation from a kwargs in the form (a=(mag, mag_err), b=(mag, mag_err))