Source code for threeML.test.test_generic

from astromodels.functions.functions_1D.powerlaws import Powerlaw

from threeML.utils.statistics.stats_tools import PoissonResiduals, Significance
from threeML.utils.step_parameter_generator import step_generator


[docs] def test_step_generator_setup(): powerlaw = Powerlaw() _ = step_generator([1, 2, 3, 4, 5], powerlaw.K) _ = step_generator([[1, 2], [3, 4]], powerlaw.K)
[docs] def test_poisson_classes(): net = 100 Noff = 1000 Non = Noff + net alpha = 1 expected = alpha * Noff pr = PoissonResiduals(Non=Non, Noff=Noff, alpha=alpha) assert pr.net == Non - expected assert pr.expected == expected _ = pr.significance_one_side() net = 0 Noff = 1000 Non = Noff + net alpha = 0.1 expected = alpha * Noff pr = PoissonResiduals(Non=Non, Noff=Noff, alpha=alpha) assert pr.net == Non - expected assert pr.expected == expected _ = pr.significance_one_side() sig = Significance(Non=Non, Noff=Noff) _ = sig.known_background() _ = sig.li_and_ma() _ = sig.li_and_ma_equivalent_for_gaussian_background(1)
# def test_cartesian(): # cart = cartesian(([1, 2, 3], [1, 2, 3]))