threeML.bayesian.ultranest_sampler module
- class threeML.bayesian.ultranest_sampler.UltraNestSampler(likelihood_model=None, data_list=None, **kwargs)[source]
Bases:
UnitCubeSampler
- sample(quiet=False)[source]
sample using the UltraNest numerical integration method :rtype:
- Returns:
- setup(min_num_live_points: int = 400, dlogz: float = 0.5, chain_name: str | None = None, resume: str = 'overwrite', wrapped_params=None, stepsampler=None, use_mlfriends: bool = True, **kwargs)[source]
set up the Ultranest sampler. Consult the documentation:
- param min_num_live_points:
minimum number of live points throughout the run
- type min_num_live_points:
int
- param dlogz:
Target evidence uncertainty. This is the std between bootstrapped logz integrators.
- type dlogz:
float
- param chain_name:
where to store output files
- type chain_name:
- param resume:
(‘resume’, ‘resume-similar’, ‘overwrite’ or ‘subfolder’) –
if ‘overwrite’, overwrite previous data. if ‘subfolder’, create a fresh subdirectory in log_dir. if ‘resume’ or True, continue previous run if available. Only works when dimensionality, transform or likelihood are consistent. if ‘resume-similar’, continue previous run if available. Only works when dimensionality and transform are consistent. If a likelihood difference is detected, the existing likelihoods are updated until the live point order differs. Otherwise, behaves like resume.
- type resume:
str
- param wrapped_params:
(list of bools) – indicating whether this parameter wraps around (circular parameter).
- type wrapped_params:
- param stepsampler:
- type stepsampler:
- param use_mlfriends:
Whether to use MLFriends+ellipsoidal+tellipsoidal region (better for multi-modal problems) or just ellipsoidal sampling (faster for high-dimensional, gaussian-like problems).
- type use_mlfriends:
bool
- returns: