threeML.plugins.DispersionSpectrumLike module
- class threeML.plugins.DispersionSpectrumLike.DispersionSpectrumLike(name: str, observation: BinnedSpectrumWithDispersion, background: BinnedSpectrum | SpectrumLike | XYLike | None = None, background_exposure: float | None = None, verbose: bool = True, tstart: float | None = None, tstop: float | None = None)[source]
Bases:
SpectrumLike
- display_rsp()[source]
Display the currently loaded full response matrix, i.e., RMF and ARF convolved :return:
- classmethod from_function(name: str, source_function, response, source_errors=None, source_sys_errors=None, background_function=None, background_errors=None, background_sys_errors=None, exposure=1.0, scale_factor=1.0) DispersionSpectrumLike [source]
Construct a simulated spectrum from a given source function and (optional) background function. If source and/or background errors are not supplied, the likelihood is assumed to be Poisson.
- Parameters:
name – simulated data set name
source_function – astromodels function
response – 3ML Instrument response
source_errors – (optional) gaussian source errors
source_sys_errors – (optional) systematic source errors
background_function – (optional) astromodels background function
background_errors – (optional) gaussian background errors
background_sys_errors – (optional) background systematic errors
exposure – the exposure to assume
scale_factor – the scale factor between source exposure / bkg exposure
- Returns:
simulated DispersionSpectrumLike plugin
- get_simulated_dataset(new_name=None, **kwargs)[source]
Returns another DispersionSpectrumLike instance where data have been obtained by randomizing the current expectation from the model, as well as from the background (depending on the respective noise models)
- Returns:
a DispersionSpectrumLike simulated instance
- property response: InstrumentResponse
- set_model(likelihoodModel: Model) None [source]
Set the model to be used in the joint minimization.
- set_model_integrate_method(method: str)[source]
Change the integrate method for the model integration :param method: (str) which method should be used (simpson or trapz)
- write_pha(filename: str, overwrite: bool = False, force_rsp_write: bool = False) None [source]
Writes the observation, background and (optional) rsp to PHAII fits files
- Parameters:
filename – base file name to write out
overwrite – if you would like to force overwriting of the files
force_rsp_write – force the writing of an rsp even if not required